Hello, Amber111!
Find the minimum number of terms which will make
the sum of the series
81+41+21+⋯ exceed quarter of a million.
We have a geometric series with first term
a1=81 and common ratio
r=2
The sum of the first n terms of a geometric series is given by:
\(\displaystyle \L\;\;\;S_n\;=\;a_1\cdot\frac{r^n\,-\,1}{r\,-\,1}\)
Your series has: \(\displaystyle \L\,S_n\;=\;\frac{1}{8}\cdot\frac{2^n\,-\,1}{2\,-\,1}\)
Hence, the sum is: \(\displaystyle \L\,\frac{2^n\,-\,1}{8}\) and it is to be greater than 250,000.
We have: \(\displaystyle \L\,\frac{2^n\,-\,1}{8}\:>\:250,000\;\;\Rightarrow\;\;2^n\:>\:2,000,001\)
Take logs: \(\displaystyle \,\ln(2^n) \:>\:\ln(2,000,001)\;\;\Rightarrow\;\;n\cdot\ln(2)\:>
\:\ln(2,000,001)\)
Hence: \(\displaystyle \L\,n\:>\:\frac{\ln(2,000,001)}{\ln(2)} \:\approx\;20.93\)
Therefore, we need at least 21 terms for the sum to exceed 250,000.
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Check
If
n=20:S20=8220−1=131,071.875
If
n=21:S21=8221−1=262,143.875