Series or Tensors!!?

mos5250

New member
Joined
Sep 26, 2016
Messages
1
Hi all;

Can anybody Help me to solve the problem, i've encountered recently... please...
thanks in advance...

i wanna solve the last equality (for C):

. . . . .A=\displaystyle \large{A\, =\, }k=1NλkVkVkT\displaystyle \large{\displaystyle \sum_{k = 1}^N\, \lambda_k\, V_k\, V_k^T}

. . . . .B=\displaystyle \large{B\, =\, }k=1NλkUkUkT\displaystyle \large{\displaystyle \sum_{k = 1}^N\, \lambda^{'}_k\, U_k\, U_k^T}

. . . . .C=AB1\displaystyle \large{C\, =\, A\, B^{-1}}
 

Attachments

  • Untitledddsgh.png
    Untitledddsgh.png
    3.5 KB · Views: 4
Last edited by a moderator:
Hi all;

Can anybody Help me to solve the problem, i've encountered recently... please...
thanks in advance...

i wanna solve the last equality (for C):

. . . . .A=\displaystyle \large{A\, =\, }k=1NλkVkVkT\displaystyle \large{\displaystyle \sum_{k = 1}^N\, \lambda_k\, V_k\, V_k^T}

. . . . .B=\displaystyle \large{B\, =\, }k=1NλkUkUkT\displaystyle \large{\displaystyle \sum_{k = 1}^N\, \lambda^{'}_k\, U_k\, U_k^T}

. . . . .C=AB1\displaystyle \large{C\, =\, A\, B^{-1}}
You are given B as a series.

How would you express B-1 as a series?
 
Last edited by a moderator:
Top