sphynx_000
New member
- Joined
- Nov 18, 2006
- Messages
- 6
I'm having some trouble setting it into the ar^(n - 1) geometric-series form. Here is the problem:
. . .\(\displaystyle \L \sum_{n=0}^{\infty}\, \frac{4^n}{3^{2n\, +\, 1}}\, =\, \sum_{n=0}^{\infty}\, \frac{4^{n\, -\, 1}}{3^{2n}} \, =\, \sum_{n=0}^{\infty}\, \frac{4^{n\, -\, 1}}{9^n}\, =\, \frac{1}{9}\, \sum_{n=0}^{\infty}\, \left(\frac{4}{9}\right)^{n\, -\, 1}\)
. . .\(\displaystyle \L \mbox{converges to:}\)
. . .\(\displaystyle \L \left(\frac{1}{1\, -\, \frac{4}{9}}\right)\left(\frac{1}{9}\right)\, =\, \begin{array}{|c|}\hline\\\frac{1}{5}?\\\hline\end{array}\)
. . .\(\displaystyle \L \mbox{with }a\,=\,1\,\mbox{ and }\, r\,=\, \frac{4}{9}\)
I was hoping someone could just look over it and make sure it was done correctly. I'm not sure if it was done correctly or not...?
. . .\(\displaystyle \L \sum_{n=0}^{\infty}\, \frac{4^n}{3^{2n\, +\, 1}}\, =\, \sum_{n=0}^{\infty}\, \frac{4^{n\, -\, 1}}{3^{2n}} \, =\, \sum_{n=0}^{\infty}\, \frac{4^{n\, -\, 1}}{9^n}\, =\, \frac{1}{9}\, \sum_{n=0}^{\infty}\, \left(\frac{4}{9}\right)^{n\, -\, 1}\)
. . .\(\displaystyle \L \mbox{converges to:}\)
. . .\(\displaystyle \L \left(\frac{1}{1\, -\, \frac{4}{9}}\right)\left(\frac{1}{9}\right)\, =\, \begin{array}{|c|}\hline\\\frac{1}{5}?\\\hline\end{array}\)
. . .\(\displaystyle \L \mbox{with }a\,=\,1\,\mbox{ and }\, r\,=\, \frac{4}{9}\)
I was hoping someone could just look over it and make sure it was done correctly. I'm not sure if it was done correctly or not...?