Series: Find the sum of 4/3 + 6/9 + 8/27 + 10/81 + ....

Math wiz ya rite 09

Junior Member
Joined
Aug 27, 2006
Messages
136
Ok. Here's my question:

Find the sum:

S= 4/3 + 6/9 + 8/27 + 10/81 + 12/243 + 14/729 + ...


I believe this is known as an infinite series, but not sure on the whole terminology.

Could someone please show me the steps towards the completeion of this problem.

THANKS!
 
The first step would be to figure out a formula for the n-th term. I would suggest looking at the numerators and denominators separately:

. . . . .4, 6, 8, 10, 12,...

. . . . .3, 9, 27, 81, 243,...

Can you get anywhere with that?

Eliz.
 
Here are some hints. Identities if you will:

\(\displaystyle \L\\\sum_{n=1}^{\infty}\frac{n}{a^{n}}=\frac{a}{(a-1)^{2}}\)

\(\displaystyle \L\\\sum_{n=1}^{\infty}\frac{1}{a^{n}}=\frac{1}{a-1}\)
 
Hello, Math wiz ya rite 09!

Find the sum: \(\displaystyle \:S\;=\; \frac{4}{3}\,+\,\frac{6}{9}\,+\,\frac{8}{27}\,+\,\frac{10}{81}\,+\,\frac{12}{243}\,+\,\frac{14}{729}\,\cdots\)

This is an infinite series ... unfortunately, not a geometric series.
. . but we can create one.


. . .We have: \(\displaystyle \L\;\;S\;=\; \frac{4}{3}\,+\,\frac{6}{9}\,+\,\frac{8}{27}\,+\,\frac{10}{81}\,+\,\frac{12}{243}\,+\,\frac{14}{729}\,\cdots\)

Multiply by \(\displaystyle \frac{1}{3}:\L\;\;\frac{1}{3}S\;=\;\;\;\;\;\frac{4}{9}\,+\,\frac{6}{27}\,+\,\frac{8}{81}\,+\,\frac{10}{243}\,+\,\frac{12}{729}\,+\,\cdots\)

. . Subtract: \(\displaystyle \L\;\frac{2}{3}S\;=\;\frac{4}{3}\;+\;\underbrace{\frac{2}{9}\,+\,\frac{2}{27}\,+\,\frac{2}{81}\,+\,\frac{2}{243}\,+\,\frac{2}{729}\,+\,\cdots}_{\text{a geometric series}}\)

The geometric series has first term \(\displaystyle a\,=\,\frac{2}{9}\) and common ratio \(\displaystyle r\,=\,\frac{1}{3}\)
. . Its sum is: \(\displaystyle \L\,\frac{\frac{2}{9}}{1\,-\,\frac{1}{3}} \:=\:\frac{1}{3}\)

So we have: \(\displaystyle \L\:\frac{2}{3}S\;=\;\frac{4}{3}\,+\,\frac{1}{3}\;=\;\frac{5}{3}\)

Therefore: \(\displaystyle \L\:S\;=\;\frac{5}{2}\)

 
Top