1000s+100e+10n+d+1000m+100ϕ+10r+e=10000m+1000ϕ+100n+10e+y.1000s+100e+10n+d<99991000m+100ϕ+10r+e<9999⟹10000m+1000ϕ+100n+10e+y<19998⟹m<2⟹m=1 ∵m is a digit =0.
1000s+100e+10n+d+1000+100ϕ+10r+e=10000+1000ϕ+100n+10e+y.1000s+100e+10n+d<99991000+100ϕ+10r+e<2999⟹10000+1000ϕ+100n+10e+y<11998⟹ϕ<2⟹ϕ=0 ∵ϕ is a digit =m=1.
s<9⟹1000s+100e+10n+d<90001000+10r+e<1099⟹10000+100n+10e+y<10099⟹n≤0,which is impossible ∵n is a digit =ϕ=0.∴s=9.
So far,
ϕ=0, m=1, s=9, and9000+100e+10n+d+1000+10r+e=10000+100n+10e+y⟹100e+10(n+r)+(d+e)=100n+10e+y.
Moving on.
d+e=y+10α, where α=0 or 1,α+n+r=e+10β, where β=0 or 1, and β+e=n.β=0⟹e=n, which is impossible.∴β=1⟹n=e+1⟹100e+10(n+r)+d+e=100n+10e+y⟹100e+10(e+1+r)+d+e=100(e+1)+10e+y⟹111e+10+10r+d=110e+100+y⟹10r+d+e=90+y.But d+e=y+10α⟹10r+y+10α=90+y⟹10r+10α=90.α=0⟹10r=90⟹r=9=s, which is impossible.∴α=1⟹10r+10=90⟹r=8 and d+e=y+10.∴
Simplifying further, we have s = 9, r = 8,
ϕ = 0, m = 1, and n = e + 1. So we are down to e, d, and y with many constraints so we can use brute force.
One constraint. is that d + e = y + 10 > 11. Another is 1 < d < 8. A third is 1 < e < 7.
If n < 6, then e < 5 so d + e < 12. Impossible.
If n = 7, then e = 6 and d < 6 so e + d < 12. Impossible.
If n = 6, e = 5, and d < 5 so e + d < 10. Impossible.
That leaves e = 5, n = 6, and d = 7 as the only possibility, which entails y = 2
Let's see whether s = 9, r = 8,
ϕ = 0, m = 1, e = 5, n = 6, d = 7, and y = 2 works.
1000s+100e+10n+d=9567.1000m+100ϕ+10r+e=1085.10000m+1000ϕ+100n+10e+y=10652.9567+1085=10652. ✓