An odd prime number [MATH]p[/MATH] and a [MATH](p + 1)[/MATH] element set [MATH]S[/MATH] of integers are given.
Prove that from [MATH]S[/MATH] it is possible to choose unique numbers [MATH]a_1, a_2, a_3, \dots, a_{p-1}[/MATH]* such that [MATH]1\cdot a_1+2\cdot a_2+\cdots + (p-1)a_{p-1}[/MATH] is a multiple of [MATH]p[/MATH].
\* [MATH]a_1 \neq a_2 \neq ... a_{p-1}[/MATH]
My observations
If [MATH]p[/MATH] is odd, then [MATH]S[/MATH] contains an even number of elements, that is, the last term [MATH](p-1)a_{p-1}[/MATH] must also be even, that's all for now.
Prove that from [MATH]S[/MATH] it is possible to choose unique numbers [MATH]a_1, a_2, a_3, \dots, a_{p-1}[/MATH]* such that [MATH]1\cdot a_1+2\cdot a_2+\cdots + (p-1)a_{p-1}[/MATH] is a multiple of [MATH]p[/MATH].
\* [MATH]a_1 \neq a_2 \neq ... a_{p-1}[/MATH]
My observations
If [MATH]p[/MATH] is odd, then [MATH]S[/MATH] contains an even number of elements, that is, the last term [MATH](p-1)a_{p-1}[/MATH] must also be even, that's all for now.