Sector of a circle

1141

New member
Joined
Jan 17, 2010
Messages
45
Can someone help with the attached questions, please?

For i.) I'm not sure how to start it? How do I find AX?

For ii.) I know I need to find the area of the sector, which I found:

1/2r[sup:1ohvsnib]2[/sup:1ohvsnib]?
= 1/2 . 12[sup:1ohvsnib]2[/sup:1ohvsnib] . 1/3?
= 24?

But to carry on, I first need to find AX, but since I'm not sure how to do i.) I can't carry on.
 

Attachments

  • IMG_3644.JPG
    IMG_3644.JPG
    123.1 KB · Views: 158
Hello, 1141!

For (i), I'm not sure how to start it.

For (ii), I know I need to find the area of the sector, which I found:

. . 12r2θ=12(122)(π3)=24π\displaystyle \tfrac{1}{2}r^2\theta \:=\:\tfrac{1}{2}(12^2)(\tfrac{\pi}{3}) \:=\: 24\pi . Good!

Draw OX.\displaystyle \text{Draw }OX.

Then ΔX ⁣AO is a 30-60 right triangle.\displaystyle \text{Then }\Delta X\!AO\text{ is a 30-60 right triangle.}

Hence: OA=12,    O ⁣X=83,    AX=43\displaystyle \text{Hence: }\:OA \,=\, 12,\;\;O\!X \,=\, 8\sqrt{3},\;\;\boxed{AX \,=\, 4\sqrt{3}}


The area of ΔX ⁣AO=12(12)(43)=243\displaystyle \text{The area of }\Delta X\!AO \:=\:\tfrac{1}{2}(12)(4\sqrt{3}) \:=\:24\sqrt{3}

The area of kite OAXB=2×243=483\displaystyle \text{The area of kite }OAXB \:=\:2\times 24\sqrt{3} \:=\:48\sqrt{3}


Therefore:   (Shaded area)  =  (Kite)(Sector)\displaystyle \text{Therefore: }\;\text{(Shaded area)} \;=\;\text{(Kite)} - \text{(Sector)}

. . . . . . . . . . . . . . . . . .   =  48324π\displaystyle \;=\;48\sqrt{3} - 24\pi

. . . . . . . . . . . . . . . . . . =  24(23π)\displaystyle =\;24(2\sqrt{3} - \pi)

 
Top