Second Derivative (Chain rule ?)

R5232

New member
Joined
Aug 31, 2008
Messages
5
I am supposed to find the first and second derivative of (x[sup:2xx6g0hf]2[/sup:2xx6g0hf]+2)[sup:2xx6g0hf]5[/sup:2xx6g0hf]

The first derivative follows:

5(x[sup:2xx6g0hf]2[/sup:2xx6g0hf]+2)[sup:2xx6g0hf]4[/sup:2xx6g0hf] (2x)
10x(x[sup:2xx6g0hf]2[/sup:2xx6g0hf]+2)[sup:2xx6g0hf]4[/sup:2xx6g0hf]

Now, Working on the second derivative, I think I run into trouble.

(10x)(x[sup:2xx6g0hf]2[/sup:2xx6g0hf]+2)[sup:2xx6g0hf]4[/sup:2xx6g0hf]
(d/dx (10x) * (x[sup:2xx6g0hf]2[/sup:2xx6g0hf]+2)[sup:2xx6g0hf]4[/sup:2xx6g0hf]) + ((10x) * (d/dx (x[sup:2xx6g0hf]2[/sup:2xx6g0hf]+2)[sup:2xx6g0hf]4[/sup:2xx6g0hf]
((10) * (x[sup:2xx6g0hf]2[/sup:2xx6g0hf]+2)[sup:2xx6g0hf]4[/sup:2xx6g0hf]) + ((10x) * (8x(x[sup:2xx6g0hf]2[/sup:2xx6g0hf]+2)[sup:2xx6g0hf]3[/sup:2xx6g0hf]

Beyond that, I think I mess something up. I think I should multiply everything out, but it doesn't end up to be the correct answer in the book

Thanks in advance!
 
Your calculus is just fine.
Now do the algebra.
Factor and multiply out.
 
(10x)(x2+2)[sup:18xd45lk]4[/sup:18xd45lk]
(d/dx (10x) * (x[sup:18xd45lk]2[/sup:18xd45lk]+2)[sup:18xd45lk]4[/sup:18xd45lk]) + ((10x) * (d/dx (x[sup:18xd45lk]2[/sup:18xd45lk]+2)[sup:18xd45lk]4[/sup:18xd45lk]
((10) * (x[sup:18xd45lk]2[/sup:18xd45lk]+2)[sup:18xd45lk]4[/sup:18xd45lk]) + ((10x) * (8x(x[sup:18xd45lk]2[/sup:18xd45lk]+2)[sup:18xd45lk]3[/sup:18xd45lk]
--
((10 * (x[sup:18xd45lk]8[/sup:18xd45lk]+16)) + ((10x) * (8x(x[sup:18xd45lk]6[/sup:18xd45lk]+8)
(10x[sup:18xd45lk]8[/sup:18xd45lk]+160) + (80x[sup:18xd45lk]8[/sup:18xd45lk]+64x[sup:18xd45lk]2[/sup:18xd45lk])
90x[sup:18xd45lk]8[/sup:18xd45lk]+64x[sup:18xd45lk]2[/sup:18xd45lk]+160

Thats what I figured the answer out to be. I may have looked over a factorisable part of the problem though.
 
\(\displaystyle 10\left( {x^2 + 2} \right)^4 + \left( {10x} \right)\left[ {8x\left( {x^2 + 2} \right)^3 } \right] = 10\left( {x^2 + 2} \right)^3 \left[ {\left( {x^2 + 2} \right) + \left( x \right)\left( {8x} \right)} \right]\)

RECALL YOUR ALGEBRA. It will save your life in calculus.
 
R5232 said:
(10x)(x2+2)[sup:2pgf9wif]4[/sup:2pgf9wif]
(d/dx (10x) * (x[sup:2pgf9wif]2[/sup:2pgf9wif]+2)[sup:2pgf9wif]4[/sup:2pgf9wif]) + ((10x) * (d/dx (x[sup:2pgf9wif]2[/sup:2pgf9wif]+2)[sup:2pgf9wif]4[/sup:2pgf9wif]
((10) * (x[sup:2pgf9wif]2[/sup:2pgf9wif]+2)[sup:2pgf9wif]4[/sup:2pgf9wif]) + ((10x) * (8x(x[sup:2pgf9wif]2[/sup:2pgf9wif]+2)[sup:2pgf9wif]3[/sup:2pgf9wif]
--
((10 * (x[sup:2pgf9wif]8[/sup:2pgf9wif]+16)) + ((10x) * (8x(x[sup:2pgf9wif]6[/sup:2pgf9wif]+8) <<<< These are incorrect

(10x[sup:2pgf9wif]8[/sup:2pgf9wif]+160) + (80x[sup:2pgf9wif]8[/sup:2pgf9wif]+64x[sup:2pgf9wif]2[/sup:2pgf9wif])
90x[sup:2pgf9wif]8[/sup:2pgf9wif]+64x[sup:2pgf9wif]2[/sup:2pgf9wif]+160

Thats what I figured the answer out to be. I may have looked over a factorisable part of the problem though.

((10) * (x[sup:2pgf9wif]2[/sup:2pgf9wif]+2)[sup:2pgf9wif]4[/sup:2pgf9wif]) + ((10x) * (8x(x[sup:2pgf9wif]2[/sup:2pgf9wif]+2)[sup:2pgf9wif]3[/sup:2pgf9wif]

=10*(x[sup:2pgf9wif]2[/sup:2pgf9wif]+2)[sup:2pgf9wif]3[/sup:2pgf9wif] * [(x[sup:2pgf9wif]2[/sup:2pgf9wif]+2) + 8x[sup:2pgf9wif]2[/sup:2pgf9wif]]

Now continue.....
 
Top