Hello, nikchic5!
Find the second-degree polynomial P such that P(2)=5, P'(2)=3 and P''(2)=2.
Obviously: \(\displaystyle \,P(x)\;=\;ax^2\,+\,bx\,+\,c\) . . . right?
We are told that: \(\displaystyle \,P(2)\,=\,5\)
\(\displaystyle \;\;\)So we have: \(\displaystyle \,a(2^2)\,+\,b(2)\,+\,c\:=\:5\;\;\Rightarrow\;\;4a\,+\,2b\,+\,c\;=\;5\)
We have: \(\displaystyle \,P'(x)\:=\:2ax\,+\,b\)
We are told that \(\displaystyle \,P'(2)\,=\,3\)
\(\displaystyle \;\;\)So we have: \(\displaystyle \,2a(2)\,+\,b\;=\;3\;\;\Rightarrow\;\;4a\,+\,b\;=\;3\)
We have: \(\displaystyle \,P''(x)\:=\:2a\)
We are told that \(\displaystyle \,P''(2)\,=\,2\)
\(\displaystyle \;\;\)So we have: \(\displaystyle \,2a\:=\:2\)
Can you solve this system? \(\displaystyle \;\begin{Bmatrix}4a\,+\,2b\,+\,c\:=\:5\\ 4a\,+\,b\:=\:3\\ 2a\:=\:2\end{Bmatrix}\)