Secants and Tangents

neno89

New member
Joined
Oct 25, 2005
Messages
20
Hello I really need some help. I'm not sure of how to do the following problems. I need to know how to do these problems for a mid term test on thursday. Can some one help me??!!

1.

238pz.png


B is 34 mm from the center of circle O, which has a radius 16 mm. Segment BP and segment BR are tangent segments. Line AC is tangent to circle O at point Q. Find the perimeter of triangle ABC.


2.

252xj.png


Given: Two concentric circles with center E; segment AB is tangent at C; Segment CD perpendicular to segment AE; AB = 40
Find: AF


3.

261gp.png


Segment BC is tangent to circle A at B, and segment BD is congruent to segment BA, Explain why segment BD bisects segment AC.


4.

283xp.png


Circles P and Q are tangent to each other and to the axes as shown. PQ = 26 and AB = 24. Find coordinates of P and Q.
 
Hello, neno89!

Here's #1 . . . I'll try to explain it without a new diagram.

1. B is 34 mm from the center of circle O, which has a radius 16 mm.
Segment BP and segment BR are tangent segments.
Line AC is tangent to circle O at point Q.
Find the perimeter of triangle ABC.
Draw radii OP\displaystyle OP and OR\displaystyle OR; their length is 16.
Draw BO=34\displaystyle BO\,=\,34.

BP\displaystyle BP is tangent to the circle at P.  \displaystyle P.\;Hence, OPBP\displaystyle OP\,\perp\,BP.
BR\displaystyle BR is tangent to the circle at R.  \displaystyle R.\;Hence, ORBR\displaystyle OR\,\perp\,BR.
    \displaystyle \;\;Hence, ΔBPO\displaystyle \Delta BPO and ΔBRO\displaystyle \Delta BRO are right triangles.

Using Pythagorus: BP2+OP2=BO2        BP2+162=342        BP2=900        BP=30\displaystyle \,BP^2\,+\,OP^2\:=\:BO^2\;\;\Rightarrow\;\;BP^2\,+\,16^2\:=\:34^2\;\;\Rightarrow\;\;BP^2\,=\,900\;\;\Rightarrow\;\;BP\,=\,30

Then: BP=BR=30    \displaystyle BP\,=\,BR\,=\,30\;\; (1)
    \displaystyle \;\;(Tangents to a circle from an external point have equal lengths.)
And note that: AQ=AP\displaystyle AQ\,=\,AP and QC=RC  \displaystyle QC\,=\,RC\; (for the same reason).   \displaystyle \; (2)


The perimeter of ΔABC\displaystyle \Delta ABC is: P  =  BA+AQ+QC+CB\displaystyle \,P\;=\;BA\,+\,AQ\,+\,QC\,+\,CB
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \displaystyle \downarrow . . . . \displaystyle \downarrow
. . . . . . . . From (2), we have: \(\displaystyle \:p\;=\:\underbrace{BA\,+\,AP}\,+\,\underbrace{RC\,+\,CB}\)

. . . . . . . . . . . . . . .But this is: \(\displaystyle \:p\;=\;\;\;\;\;BP\;\;\;+\;\;\;BR\)


And from (1), we have: P  =  30+30=60\displaystyle \,P\;=\;30\,+\,30\:=\:60

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Fascinating!
We draw AC\displaystyle AC tangent to the circle at Q\displaystyle Q.
No matter how we position that tangent,
    \displaystyle \;\;the perimeter of ΔABC\displaystyle \Delta ABC is always 60 mm.
 
Top