The solution seems too simple have I missed something silly?
Find the derivative
\(\displaystyle \L\\\begin{array}{l}
s(x) = \ln (\sin 2x) + \sin (\ln (2x)) \\
s'(x) = \frac{{2\cos 2x}}{{\sin 2x}} + \frac{{2\cos (\ln (2x)}}{{2x}} \\
s'(x) = 2\cot 2x + \frac{{\cos (\ln (2x)}}{x} \\
\end{array}\)
Thanks Sophie
Find the derivative
\(\displaystyle \L\\\begin{array}{l}
s(x) = \ln (\sin 2x) + \sin (\ln (2x)) \\
s'(x) = \frac{{2\cos 2x}}{{\sin 2x}} + \frac{{2\cos (\ln (2x)}}{{2x}} \\
s'(x) = 2\cot 2x + \frac{{\cos (\ln (2x)}}{x} \\
\end{array}\)
Thanks Sophie