Could you help me to figure out how to solve for the values of x where f ’(x) = 0 for
Number 2.
Verify that the function satisfies the three hypotheses of Rolle’s Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle’s Theorem.
\(\displaystyle f(x) = x^{3} - 3x^{2} + 2x + 5\) for [0,2]
My work for number 2:
\(\displaystyle f(x) = x^{3} - 3x^{2} + 2x + 5\) for [0,2]
1) f(x) is continuous on [0,2] as it is a polynomial.
2) f is differentiable on (0,2)
\(\displaystyle f'(x)= 3x^{2} -6x+2\)
3)f(0) = f(2)
\(\displaystyle f(0) = 0^{3} -3(0)^{2} + 2(0) + 5\)
f{0) = 0-0+0+5
f(0) = 5
\(\displaystyle f(2) = 2^{3} -3(2)^{2} + 2(2) + 5\)
f(2)=8-12+4+5
f(2)=5
*The function satisfies the three hypotheses of Rolle’s Theorem.
f'(x)=0
\(\displaystyle f’(x)=3x^{2}-6x+2\) \(\displaystyle \hspace{100}\)for 0<x<2
\(\displaystyle 3x^{2}-6x+2 = 0\)
\(\displaystyle x= \frac{-b \pm \sqrt{b^{2} -4ac}}{2a}\)
\(\displaystyle x= \frac{6 \pm \sqrt{6^{2} -4(2)(3)}}{2(2)}\)
\(\displaystyle x= \frac{6 \pm \sqrt{12}}{4}\)
\(\displaystyle x= \frac{6 \pm \sqrt{(4)(3)}}{4}\)
\(\displaystyle x= \frac{6 \pm 2\sqrt{(3)}}{4}\)
\(\displaystyle x= \frac{3 \pm \sqrt{(3)}}{2}\)
\(\displaystyle x= \frac{3 + \sqrt{(3)}}{2}\) = 2.36603
or
\(\displaystyle x= \frac{3 - \sqrt{(3)}}{2}\) = 0.633975
I think the only answer is x = c = \(\displaystyle \frac{3 - \sqrt{(3)}}{2}\) = 0.633975
Does this seem right at all?
Number 2.
Verify that the function satisfies the three hypotheses of Rolle’s Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle’s Theorem.
\(\displaystyle f(x) = x^{3} - 3x^{2} + 2x + 5\) for [0,2]
My work for number 2:
\(\displaystyle f(x) = x^{3} - 3x^{2} + 2x + 5\) for [0,2]
1) f(x) is continuous on [0,2] as it is a polynomial.
2) f is differentiable on (0,2)
\(\displaystyle f'(x)= 3x^{2} -6x+2\)
3)f(0) = f(2)
\(\displaystyle f(0) = 0^{3} -3(0)^{2} + 2(0) + 5\)
f{0) = 0-0+0+5
f(0) = 5
\(\displaystyle f(2) = 2^{3} -3(2)^{2} + 2(2) + 5\)
f(2)=8-12+4+5
f(2)=5
*The function satisfies the three hypotheses of Rolle’s Theorem.
f'(x)=0
\(\displaystyle f’(x)=3x^{2}-6x+2\) \(\displaystyle \hspace{100}\)for 0<x<2
\(\displaystyle 3x^{2}-6x+2 = 0\)
\(\displaystyle x= \frac{-b \pm \sqrt{b^{2} -4ac}}{2a}\)
\(\displaystyle x= \frac{6 \pm \sqrt{6^{2} -4(2)(3)}}{2(2)}\)
\(\displaystyle x= \frac{6 \pm \sqrt{12}}{4}\)
\(\displaystyle x= \frac{6 \pm \sqrt{(4)(3)}}{4}\)
\(\displaystyle x= \frac{6 \pm 2\sqrt{(3)}}{4}\)
\(\displaystyle x= \frac{3 \pm \sqrt{(3)}}{2}\)
\(\displaystyle x= \frac{3 + \sqrt{(3)}}{2}\) = 2.36603
or
\(\displaystyle x= \frac{3 - \sqrt{(3)}}{2}\) = 0.633975
I think the only answer is x = c = \(\displaystyle \frac{3 - \sqrt{(3)}}{2}\) = 0.633975
Does this seem right at all?