Find all the right-inverses of the matrix \(\displaystyle \begin{pmatrix}1 & -2 &3 \\ -4 & 5 & -6\end{pmatrix}\)
Attempt:
\(\displaystyle \textbf{AR} = \mathbf{I_2}\)
\(\displaystyle \begin{pmatrix}1 & -2 &3 \\ -4& 5 &-6 \end{pmatrix}\begin{pmatrix}x1 &y1 \\ x2&y2 \\ x3&y3 \end{pmatrix} = \begin{pmatrix}1 & 0\\ 0& 1\end{pmatrix}\)
\(\displaystyle \begin{pmatrix}1 & -2 & 3 & | 1 & 0\\ -4& 5 &-6 & |0 & 1\end{pmatrix} = \begin{pmatrix}1 & -2 & 3 & | 1 & 0\\ 0& -3 &6 &|4 & 1\end{pmatrix}\) Row2New = Row2 + 4Row1
I am suppose to be getting the same identity matrix:\(\displaystyle \mathbf{I_2}\) on the LHS of the 2nd part of the gauss reduction, but I am not
Attempt:
\(\displaystyle \textbf{AR} = \mathbf{I_2}\)
\(\displaystyle \begin{pmatrix}1 & -2 &3 \\ -4& 5 &-6 \end{pmatrix}\begin{pmatrix}x1 &y1 \\ x2&y2 \\ x3&y3 \end{pmatrix} = \begin{pmatrix}1 & 0\\ 0& 1\end{pmatrix}\)
\(\displaystyle \begin{pmatrix}1 & -2 & 3 & | 1 & 0\\ -4& 5 &-6 & |0 & 1\end{pmatrix} = \begin{pmatrix}1 & -2 & 3 & | 1 & 0\\ 0& -3 &6 &|4 & 1\end{pmatrix}\) Row2New = Row2 + 4Row1
I am suppose to be getting the same identity matrix:\(\displaystyle \mathbf{I_2}\) on the LHS of the 2nd part of the gauss reduction, but I am not