\(\displaystyle \L
\begin{array}{l}
[0,2],\,n = 4\quad \Rightarrow \Delta x = \frac{{2 - 0}}{4} = \frac{1}{2} \\
x_0 = 0,\;x_1 = \frac{1}{2},\;x_2 = 1\;x_3 = \frac{3}{2}\;x_4 = 2 \\
f(x) = 5 - x^2 \\
RS = \sum\limits_{k = 1}^4 {f(x_k )\Delta x} = \left[ {\left( {5 - x_1 ^2 } \right) + \left( {5 - x_2 ^2 } \right) + \left( {5 - x_3 ^2 } \right) + \left( {5 - x_4 ^2 } \right)} \right](1/2) \\
\end{array}\)