I'm short on time at the moment, so I'll just LaTeX the graphic for now. (I couldn't read the image -- I have very poor eyesight -- so I downloaded and enlarged it.) Please post corrections, as necessary.
. . . . .\(\displaystyle \large{\int_b^a{\,x^2\,}dx\,= \,\begin{array}{c}limit\\n\rightarrow\infty\end{array}\,\begin{array}{c}n\\\sum\\i=1\end{array}\,F(x_i)\,\Delta x}\)
. . . . .\(\displaystyle \large{=\,\begin{array}{c}limit\\n\rightarrow\infty\end{array}\,\begin{array}{c}n\\\sum\\i=1\end{array}\,{\left[a\,+\,\frac{b_i\,-\,a_i}{n}\right]}^2\;\frac{b\,-\,a}{n}}\)
. . . . .\(\displaystyle \large{=\,\begin{array}{c}limit\\n\rightarrow\infty\end{array}\,\frac{b\,-\,a}{n}\,\begin{array}{c}n\\\sum\\i=1\end{array}\left(a^2\,+\,2a{\left(\frac{b_i\,-\,a_i}{n}\right)}\,+\,{\left({\frac{b_i\,-\,a_i}{n}}^2\right)}\right)}\)
. . . . .\(\displaystyle \large{=\,\begin{array}{c}limit\\n\rightarrow\infty\end{array}\,\frac{b\,-\,a}{n}\,\left[{a^2 n\,+\,\frac{2a}{n}\,\begin{array}{c}n\\\sum\\i=1\end{array}\,b_i\,-\,\frac{2a}{n}\,\begin{array}{c}n\\\sum\\i=1\end{array}\,a_i\,+\,\frac{1}{n^2}\,\begin{array}{c}n\\\sum\\i=1\end{array}\,{b_i}^2\,-\,\frac{2}{n}\,\begin{array}{c}n\\\sum\\i=1\end{array}\,a_i b_i\,+\,\frac{1}{n^2}\,\begin{array}{c}n\\\sum\\i=1\end{array}{a_i}^2}\right]}\)
Eliz.