Note: I know there is an easier way to do this (the traditional integral way), but CLEP Calculus demands me to know this:
\(\displaystyle \int^{8}_{4} x dx \)
Given lower bound \(\displaystyle a (4)\) and upper bound \(\displaystyle b (8)\)
Formula: \(\displaystyle \lim_{x\to\infty}\sum_{i=1}^{n}\dfrac{(b - a)}{n} * f(\dfrac{a + i(b - a)}{n})\)
\(\displaystyle \lim_{x\to\infty}\sum_{i=1}^{n}\dfrac{(8 - 4)}{n} * f([4 + \dfrac{4 + i(8 - 4)}{n})]\)
\(\displaystyle \lim_{x\to\infty}\sum_{i=1}^{n}\dfrac{4}{n} * f([4 + \dfrac{4 + 4i)}{n}])\)
How did this line become the next line?
\(\displaystyle \lim_{x\to\infty}\sum_{i=1}^{n} 16 \dfrac{n + i}{n^{2}} \)
\(\displaystyle \int^{8}_{4} x dx \)
Given lower bound \(\displaystyle a (4)\) and upper bound \(\displaystyle b (8)\)
Formula: \(\displaystyle \lim_{x\to\infty}\sum_{i=1}^{n}\dfrac{(b - a)}{n} * f(\dfrac{a + i(b - a)}{n})\)
\(\displaystyle \lim_{x\to\infty}\sum_{i=1}^{n}\dfrac{(8 - 4)}{n} * f([4 + \dfrac{4 + i(8 - 4)}{n})]\)
\(\displaystyle \lim_{x\to\infty}\sum_{i=1}^{n}\dfrac{4}{n} * f([4 + \dfrac{4 + 4i)}{n}])\)
\(\displaystyle \lim_{x\to\infty}\sum_{i=1}^{n} 16 \dfrac{n + i}{n^{2}} \)
Last edited: