revenue R = 15,000 + 130x, cost C = 20,000 + 5(x - 60)^2

Math wiz ya rite 09

Junior Member
Joined
Aug 27, 2006
Messages
136
The cost C of producing x items is given by C(x) = 20,000 + 5(x-60)^2. THe revenue R obtained by selling x items is given by R(x) = 15,000 + 130x. The revenue will exceed the cost for all x such that

A) 0<x<46
B) x>46
C) x<100
D) 46<x<100
E) x>100
 
Subtract \(\displaystyle R\(x\)-Cxx\). Let the difference be \(\displaystyle D\(x\)\).

Find the zeros of \(\displaystyle D\(x\)\). Let z1 and z2 (z1<z2) be the zeros if they exist. If they don't then the answr is 'no x.' Otherwise, it is an 'upside down' parabola so your answer will be of the form z1 < x < z2.
 
Re: revenue

Hello, Math wiz ya rite 09!

The cost C\displaystyle C of producing x items is given by: C(x)=20,000+5(x60)2\displaystyle \:C(x) \:= \:20,000\,+\,5(x\,-\,60)^2
THe revenue R\displaystyle R obtained by selling x items is given by: R(x)=15,000+130x\displaystyle \:R(x) \:= \:15,000\,+\,130x

The revenue will exceed the cost for all x\displaystyle x such that:

A)  0<x<46      B)  x>46      C)  x<100      D)  46<x<100      E)  x>100\displaystyle A)\;0\:<\:x\:<\:46\;\;\;B)\;x\:>\:46\;\;\;C)\;x\,<\,100\;\;\;D)\;46\:<\:x\:<\:100\;\;\;E)\;x\:>\:100

If Revenue exceeds Cost, then: R(x)>C(x)\displaystyle \:R(x)\:>\:C(x)

We have: f(x)  =  15,000+130x  >  20,000+5(x60)2\displaystyle \:f(x)\;=\;15,000\,+\,130x \;>\;20,000\,+\,5(x\,-\,60)^2

. . which simplifies to: f(x)  =  5x2730x+23,000  <  0\displaystyle \:f(x)\;=\;5x^2\,-\,730x\,+\,23,000\;<\;0

When is this parabola negative? . . . Between its x-intercepts.

We have:   5x2730x+23,000=0        x2146x+4600=0\displaystyle \;5x^2\,-\,730x\,+\,23,000 \:=\:0\;\;\Rightarrow\;\;x^2\,-\,146x\,+\,4600\:=\:0

. . which factors: \(\displaystyle \:(x\,-\,46)(x\,-\,100) \:=\:0\)

. . and has roots: x=46,100  \displaystyle \:x\:=\:46,\:100\; ← x-intercepts


Therefore, R(x)>C(x)\displaystyle R(x)\,>\,C(x) for: \(\displaystyle \:\L{\color{blue}46\,<\,x\,<\,100}\) . . . answer (D)

 
Top