william_33
New member
- Joined
- Mar 4, 2013
- Messages
- 10
Compute the limit along the given circular arc:
\(\displaystyle \lim_{r\to 0^+} \int_{T_r}\frac{2z^2+1}{z}dz,\) where \(\displaystyle T_r:z=re^{i\theta}, 0\le \theta \le \frac{\pi}{2}.\)
The answer is: \(\displaystyle i(\frac{\pi}{2}-0) Res(0)=\frac{i\pi}{2}\), but I do not know how they got that?
\(\displaystyle \lim_{r\to 0^+} \int_{T_r}\frac{2z^2+1}{z}dz,\) where \(\displaystyle T_r:z=re^{i\theta}, 0\le \theta \le \frac{\pi}{2}.\)
The answer is: \(\displaystyle i(\frac{\pi}{2}-0) Res(0)=\frac{i\pi}{2}\), but I do not know how they got that?