requesting help with arcsin2X + arcsinX = Pi/2

adpcane15

New member
Joined
Apr 12, 2007
Messages
12
arcsin2X+arcsinX=Pi/2

I dont know where to start or how to do any of it!

Plase Help!!!

Thanks
 
\(\displaystyle \L\\sin^{-1}(2x)+sin^{-1}(x)=\frac{\pi}{2}\)

IDENTITY: \(\displaystyle \frac{\pi}{2}-sin^{-1}(x)=cos^{-1}(x)\)

\(\displaystyle \L\\sin^{-1}(2x)=cos^{-1}(x)\)

\(\displaystyle \L\\2x=sin(cos^{-1}(x))\)

\(\displaystyle \L\\2x=\sqrt{1-x^{2}}\)

Now, finish?.
 
Top