Related Rates

asimon2005

New member
Joined
Nov 29, 2007
Messages
34
Calculus: Early Transcendentals 6th edition

Related Rates

#32. When air expands adiabatically (without gaining or losing heat), its pressure P and volume V are related by the equation PV^1.4=C, where C is a constant. Suppose that at a certain instant the volume is 400cm^3 and the pressure is 80kPA and is decreasing at a rate of 10kPA/min. At what rate is the volume increasing at this instant?
 
Assuming no conversion of units is necessary, we have;

Given: PV1.4 = C, C a constant, V = 400, P = 80, and dPdt = 10, find dVdt.\displaystyle Given: \ PV^{1.4} \ = \ C, \ C \ a \ constant, \ V \ = \ 400, \ P \ = \ 80, \ and \ \frac{dP}{dt} \ = \ -10, \ find \ \frac{dV}{dt}.

dPdtV1.4+P(1.4)V.4dVdt = 0, P(1.4)V.4dVdt = dPdtV1.4\displaystyle \frac{dP}{dt}V^{1.4}+P(1.4)V^{.4}\frac{dV}{dt} \ = \ 0, \ P(1.4)V^{.4}\frac{dV}{dt} \ = \ -\frac{dP}{dt}V^{1.4}

dVdt = dPdtV1.4P(1.4)V.4 = 10V(1.4)P = (10)(400)(1.4)(80)\displaystyle \frac{dV}{dt} \ = \ \frac{-\frac{dP}{dt}V^{1.4}}{P(1.4)V^{.4}} \ = \ \frac{10V}{(1.4)P} \ = \ \frac{(10)(400)}{(1.4)(80)}

Hence, dVdt = 4000112 = 2507 = 35.7 cm3min.\displaystyle Hence, \ \frac{dV}{dt} \ = \ \frac{4000}{112} \ = \ \frac{250}{7} \ = \ 35.7 \ \frac{cm^{3}}{min.}
 
Top