wonky-faint
New member
- Joined
- Aug 28, 2006
- Messages
- 17
A swimming pool is 15 feet wide, 40 feet long, 3 feet deep at one end, and 10 feet deep at the other end. Water is being added to it at a rate of 25 cubic feet per minute.
a) how fast is the water level rising when there is 2000 cubic feet of water in the pool
b) how fast is the water level rising when there is 3000 cubic feet of water in the pool.
This is what I have worked out so far, but I don't know where to go from here:
V=1/2(40)(20)(3+10)=5200 cubic feet
dV/dt=25ft^3 per min
Now I'm not sure if I'm supposed to find the derivative of the volume function and then where to go from there.
I would appreciate not just the answer but how to actually do it because i have to do 20 other related rates problems. thankyou
a) how fast is the water level rising when there is 2000 cubic feet of water in the pool
b) how fast is the water level rising when there is 3000 cubic feet of water in the pool.
This is what I have worked out so far, but I don't know where to go from here:
V=1/2(40)(20)(3+10)=5200 cubic feet
dV/dt=25ft^3 per min
Now I'm not sure if I'm supposed to find the derivative of the volume function and then where to go from there.
I would appreciate not just the answer but how to actually do it because i have to do 20 other related rates problems. thankyou