shortman12012
New member
- Joined
- Aug 23, 2011
- Messages
- 8
1. The problem statement, all variables and given/known data
Water flows into a cubical tank at a rate of 19 L/s. If the top surface of the water in the tank is rising by 3.7 cm every second, what is the length of each side of the tank?
2. Relevant equations
v=L^3
3. The attempt at a solution
so what I started doing was
dV/ds = 3l^2 dl/ds
changed 19 L/sec into cm^3 which is 19000
19000 = 3l^2(3.7)
19000 = 11.1l^2
divided both sides by 11.1
1711.71 = l^2
then took the square root of both sides to get
41.37 cm
however when i put in the answer for my homework, it says the answer is wrong, i have 10 tries, so i was wondering what am i doing wrong or what is the right way to do this problem
Water flows into a cubical tank at a rate of 19 L/s. If the top surface of the water in the tank is rising by 3.7 cm every second, what is the length of each side of the tank?
2. Relevant equations
v=L^3
3. The attempt at a solution
so what I started doing was
dV/ds = 3l^2 dl/ds
changed 19 L/sec into cm^3 which is 19000
19000 = 3l^2(3.7)
19000 = 11.1l^2
divided both sides by 11.1
1711.71 = l^2
then took the square root of both sides to get
41.37 cm
however when i put in the answer for my homework, it says the answer is wrong, i have 10 tries, so i was wondering what am i doing wrong or what is the right way to do this problem