Related Rates problem

jtw2e2

New member
Joined
Sep 3, 2009
Messages
45
A lighthouse sits 1 mile from a straight coast line. The lamp makes 4 revolutions per minute. How quickly is the light sweeping along the coastline when the leading edge is at a point 3 miles from the point directly across from the lighthouse?

So: d?/dt = 8?/min
And we want dx/dt when x = 3

Here is my preliminary sketch.
2vx3r0i.jpg


Then, tan? = x/1 and x = tan?
I differentiated with respect to time and found dx/dt = sec[sup:aqclsz7j]2[/sup:aqclsz7j]? (d?/dt) which is the same as 1/cos[sup:aqclsz7j]2[/sup:aqclsz7j]? * (d?/dt).

Now, this is where I'm stuck -- finding ?. I tried using arctan and came up with dx/dt = 251.3274...

When I tried the Pythagorean theorem to find the hypotenuse, I got ?10, which means that cos? = 1/?10. So for the denominator cos[sup:aqclsz7j]2[/sup:aqclsz7j]?, we have (1/?10)[sup:aqclsz7j]2[/sup:aqclsz7j].
Continuing the final formula would be 1/(1/?10)[sup:aqclsz7j]2[/sup:aqclsz7j] * (8?/min) = 251.3274....

Am I missing something here? That number just seems way too high.


Thanks for any help you could offer. HW due in the morning!
 
Hello, jtw2e2!

A lighthouse sits 1 mile from a straight coast line.
The lamp makes 4 revolutions per minute.
How quickly is the light sweeping along the coastline when the leading edge
is at a point 3 miles from the point directly across from the lighthouse?

So: d?/dt = 8?/min
And we want dx/dt when x = 3

Then, tan? = x/1 and x = tan?
I differentiated with respect to time and found dx/dt = sec[sup:33980xnm]2[/sup:33980xnm]? (d?/dt)


All this is correct . . . but why fool around with trig identities?

When x=3, we have a right triangle with:   {opp=3adj=1hyp=10}\displaystyle \text{When }x = 3\text{, we have a right triangle with: }\;\begin{Bmatrix}opp &=& 3 \\ adj &=& 1 \\ hyp &=& \sqrt{10}\end{Bmatrix}
. . Then: secθ=101=10\displaystyle \text{Then: }\:\sec\theta \:=\:\frac{\sqrt{10}}{1} \:=\:\sqrt{10}

Then we have: dxdt=(10)28π=80π miles/minute\displaystyle \text{Then we have: }\:\frac{dx}{dt} \:=\:\left(\sqrt{10}\right)^2\cdot 8\pi \:=\:80\pi\text{ miles/minute}


~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~


Since dxdt=sec2 ⁣θdθdt and dθdt is a constant k,\displaystyle \text{Since }\frac{dx}{dt} \:=\:\sec^2\!\theta\,\frac{d\theta}{dt}\,\text{ and }\,\frac{d\theta}{dt}\,\text{ is a constant }k,

. . we have: dxdt=ksec2θ\displaystyle \text{we have: }\:\frac{dx}{dt} \:=\:k\sec^2\theta


Note that: limθπ2secθ=\displaystyle \text{Note that: }\:\lim_{\theta\to\frac{\pi}{2}} \sec\theta \:=\:\infty

. . Hence:   limθπ2dxdt  =  limθπ2ksec2θ=\displaystyle \text{Hence: }\;\lim_{\theta\to\frac{\pi}{2}} \frac{dx}{dt} \;=\;\lim_{\theta\to\frac{\pi}{2}} k\sec^2\theta \:=\:\infty

That is, as the angle approaches 90o, the light-beam is approaching in ⁣finite speed.\displaystyle \text{That is, as the angle approaches }90^o\text{, the light-beam is approaching }in\!finite\text{ speed.}


It is not surprising that, somewhere along the coastline, the speed is about 15,000 mph.\displaystyle \text{It is not surprising that, somewhere along the coastline, the speed is about 15,000 mph.}

 
soroban said:
All this is correct . . . but why fool around with trig identities?

Mainly because I'm a moron and didn't know there was any other way to do it. :lol: I can repeat processes but after 30 Related Rates problems I still lack the ability to "know" what to do next.

Thanks for showing an easier way and explaining about the limit as theta --> infinity.
 
Given: dθdt = 8πmilesmin, find dxdt when x = 3.\displaystyle Given: \ \frac{d\theta}{dt} \ = \ \frac{8\pi miles}{min}, \ find \ \frac{dx}{dt} \ when \ x \ = \ 3.

x = tan(θ), hence dxdt = sec2(θ)dθdt (Implicit differentation with respect to t)\displaystyle x \ = \ tan(\theta), \ hence \ \frac{dx}{dt} \ = \ sec^{2}(\theta)\frac{d\theta}{dt} \ (Implicit \ differentation \ with \ respect \ to \ t)

Now, when x = 3, θ = arctan(3), ergo we have dxdt = sec2[arctan(3)]dθdt,\displaystyle Now, \ when \ x \ = \ 3, \ \theta \ = \ arctan(3), \ ergo \ we \ have \ \frac{dx}{dt} \ = \ sec^{2}[arctan(3)]\frac{d\theta}{dt},

Ergo, dxdt = (10)(8πmilesmin) = (80πmilesmin).\displaystyle Ergo, \ \frac{dx}{dt} \ = \ (10)\bigg(\frac{8 \pi miles}{min}\bigg) \ = \ \bigg(\frac{80 \pi miles}{min}\bigg).
 
Top