An inverted cone has a height of [FONT=MathJax_Main]11[/FONT] inches and a radius of [FONT=MathJax_Main]18[/FONT] inches. The volume of the inverted cone is decreasing at a rate of [FONT=MathJax_Main]541[/FONT] cubic inches per second, with the height being held constant. What is the rate of change of the radius, in inches per second, when the radius is [FONT=MathJax_Main]5[/FONT] inches?Round your answer to the nearest hundredth. (Do not include any units in your answer.)
Remember that the volume of a cone is [FONT=MathJax_Math-italic]V[FONT=MathJax_Main]=([/FONT][FONT=MathJax_Main]1/[/FONT][FONT=MathJax_Main]3) [/FONT][FONT=MathJax_Math-italic]π[/FONT][FONT=MathJax_Math-italic]r[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]h[/FONT].[/FONT]
Remember that the volume of a cone is [FONT=MathJax_Math-italic]V[FONT=MathJax_Main]=([/FONT][FONT=MathJax_Main]1/[/FONT][FONT=MathJax_Main]3) [/FONT][FONT=MathJax_Math-italic]π[/FONT][FONT=MathJax_Math-italic]r[/FONT][FONT=MathJax_Main]2[/FONT][FONT=MathJax_Math-italic]h[/FONT].[/FONT]
Last edited by a moderator: