region enclosed by parametric eqn: x = t^3 - 8t, y = 7t^2

thebenji

New member
Joined
Sep 2, 2006
Messages
31
Find the area of the region enclosed by the parametric equation

x = t^3 - 8t
y = 7t^2

I have a feeling I could do this if I knew the limits of integration...how do I find them?
 
Try graphing your parametrics.

Solve \(\displaystyle y=7t^{2}\) for t and sub into x

\(\displaystyle t=\sqrt{\frac{y}{7}}\)

\(\displaystyle x=8(\sqrt{\frac{y}{7}})^{3}-8(\sqrt{\frac{y}{7}})\)

\(\displaystyle \L\\=\frac{8(7y)^{\frac{3}{2}}}{343}-\frac{8\sqrt{7y}}{7}\)

Setting this to 0 and solving for y gives y=0 and 56

parametrichn3.jpg
 
So do I take the integral of

67dca6f49ef95bd3e0402894a9343186.gif


with respect to y from 0 to 56?

I tried that and I keep getting the wrong answer. Before I go crazy over it, I want to double check that I'm doing the right thing.
 
Re: region enclosed by parametric eqn: x = t^3 - 8t, y = 7t^

Hello, thebenji!

Find the area of the region enclosed by the parametric equations:
. . \(\displaystyle \begin{array}{cc}[1]\\[2]\end{array}\:\begin{array}x \:= \:t^3 \,-\,8t \\ y\:=\:7t^2\end{array}\)

Eliminate the parameter (as Galactus did):

From [1], we have: \(\displaystyle \L\,t \:=\:\sqrt{\frac{y}{7}}\)

Substitute into [2]: \(\displaystyle \L\,x\;=\;8\left(\sqrt{\frac{y}{7}}\right)^3\,-\,8\left(\sqrt{\frac{y}{7}}\right) \:=\:\frac{8y^{\frac{3}{2}}}{7\sqrt{7}}\,-\,\frac{8y^{\frac{1}{2}}}{\sqrt{7}} \:=\:\frac{8}{7\sqrt{7}}\left(y^{\frac{3}{2}}\,-\,7y^{\frac{1}{2}}\right)\)

Then: \(\displaystyle \L\:A\;=\;\2\,\times\,\frac{8}{7\sqrt{7}}\int^{\;\;\;56}_0\left(y^{\frac{3}{2}}\,-\,7y^{\frac{1}{2}}\right)\,dy\)

. . \(\displaystyle \L A \;=\;\left\, \frac{16}{7\sqrt{7}}\left(\frac{2}{5}y^{\frac{5}{2}} \,-\,\frac{14}{3}y^{\frac{3}{2}}\right)\,\right|^{56}_0 \;= \;\left\,\frac{16}{7\sqrt{7}}\cdot\frac{2y^{\frac{3}{2}}}{15}\left(3y\,-\,35\right)\,\right|^{56}_0 \;=\;\left\,\frac{32}{105\sqrt{7}}y^{\frac{3}{2}}(3y\,-\,35)\,\right|^{56}_0\)

Can you finish it now?

 
Top