Use \(\displaystyle \int_{0}^{\frac{\pi}{2}}sin^{n}xdx = \frac{n - 1}{n} \int_{0}^{\frac{\pi}{2}}sin^{n-2}xdx\)
to show that, for odd powers of sine,
\(\displaystyle \int_{0}^{\frac{\pi}{2}}sin^{2n + 1}xdx = \frac{2 \cdot 4 \cdot 6 \cdot \cdot \cdot \cdot \cdot 2n }{3\cdot5\cdot7\cdot\cdot\cdot\cdot\cdot(2n + 1)}\)
Attempt:
I subbed in 2n + 1 into n in the original reduction formula and got:
\(\displaystyle \int_{0}^{\frac{\pi}{2}}sin^{2n+1}xdx = \frac{2n}{2n +1} \int_{0}^{\frac{\pi}{2}}sin^{2n-1}xdx\)
but I cant see what more I can do
to show that, for odd powers of sine,
\(\displaystyle \int_{0}^{\frac{\pi}{2}}sin^{2n + 1}xdx = \frac{2 \cdot 4 \cdot 6 \cdot \cdot \cdot \cdot \cdot 2n }{3\cdot5\cdot7\cdot\cdot\cdot\cdot\cdot(2n + 1)}\)
Attempt:
I subbed in 2n + 1 into n in the original reduction formula and got:
\(\displaystyle \int_{0}^{\frac{\pi}{2}}sin^{2n+1}xdx = \frac{2n}{2n +1} \int_{0}^{\frac{\pi}{2}}sin^{2n-1}xdx\)
but I cant see what more I can do