Let J[sub:2aplqv9g]n[/sub:2aplqv9g] = [integral of] x[sup:2aplqv9g]m[/sup:2aplqv9g] * (lnx)[sup:2aplqv9g]n[/sup:2aplqv9g] * dx where m is a real number not equal to 1 and n is a positive integer. Establish a reduction formula for J[sub:2aplqv9g]n[/sub:2aplqv9g], then deduce a formula for J[sub:2aplqv9g]n[/sub:2aplqv9g]
I used by parts:
u = (lnx)[sup:2aplqv9g]n[/sup:2aplqv9g], du = n * (lnx)[sup:2aplqv9g]n-1[/sup:2aplqv9g] * (1/x) * dx
dv = x[sup:2aplqv9g]m[/sup:2aplqv9g] * dx, v = x[sup:2aplqv9g]m+1[/sup:2aplqv9g]/(m+1)
so the integral is equal to: v*u - [integral of] v*du
= x[sup:2aplqv9g]m+1[/sup:2aplqv9g]/(m+1) * (lnx)[sup:2aplqv9g]n[/sup:2aplqv9g] - n/(m+1) [integral of] x[sup:2aplqv9g]m+1[/sup:2aplqv9g] * (lnx)[sup:2aplqv9g]n-1[/sup:2aplqv9g] * (1/x) * dx
= x[sup:2aplqv9g]m+1[/sup:2aplqv9g]/(m+1) * (lnx)[sup:2aplqv9g]n[/sup:2aplqv9g] - n/(m+1) [integral of] x[sup:2aplqv9g]m[/sup:2aplqv9g] * (lnx)[sup:2aplqv9g]n-1[/sup:2aplqv9g] * dx
= x[sup:2aplqv9g]m+1[/sup:2aplqv9g]/(m+1) * (lnx)[sup:2aplqv9g]n[/sup:2aplqv9g] - n/(m+1) * J[sub:2aplqv9g]n-1[/sub:2aplqv9g]
I think this is the reduction formula for J[sub:2aplqv9g]n[/sub:2aplqv9g], but can't figure out how to deduce a formula for J[sub:2aplqv9g]n[/sub:2aplqv9g]!
I used by parts:
u = (lnx)[sup:2aplqv9g]n[/sup:2aplqv9g], du = n * (lnx)[sup:2aplqv9g]n-1[/sup:2aplqv9g] * (1/x) * dx
dv = x[sup:2aplqv9g]m[/sup:2aplqv9g] * dx, v = x[sup:2aplqv9g]m+1[/sup:2aplqv9g]/(m+1)
so the integral is equal to: v*u - [integral of] v*du
= x[sup:2aplqv9g]m+1[/sup:2aplqv9g]/(m+1) * (lnx)[sup:2aplqv9g]n[/sup:2aplqv9g] - n/(m+1) [integral of] x[sup:2aplqv9g]m+1[/sup:2aplqv9g] * (lnx)[sup:2aplqv9g]n-1[/sup:2aplqv9g] * (1/x) * dx
= x[sup:2aplqv9g]m+1[/sup:2aplqv9g]/(m+1) * (lnx)[sup:2aplqv9g]n[/sup:2aplqv9g] - n/(m+1) [integral of] x[sup:2aplqv9g]m[/sup:2aplqv9g] * (lnx)[sup:2aplqv9g]n-1[/sup:2aplqv9g] * dx
= x[sup:2aplqv9g]m+1[/sup:2aplqv9g]/(m+1) * (lnx)[sup:2aplqv9g]n[/sup:2aplqv9g] - n/(m+1) * J[sub:2aplqv9g]n-1[/sub:2aplqv9g]
I think this is the reduction formula for J[sub:2aplqv9g]n[/sub:2aplqv9g], but can't figure out how to deduce a formula for J[sub:2aplqv9g]n[/sub:2aplqv9g]!