Hello, lunabee!
I assume we're asked to find the \(\displaystyle n^{th}\) term of the sequence.
h1(x) = x, h n(x) = 1 = 2hn-1(x),n ≥ 2
The notation is very clumsy.
\(\displaystyle \;\;h\) is a function of
n . . . not of
x.
We have: \(\displaystyle \,h(1)\,=\,x,\;h(n)\:=\:1\,-\,2\cdot h(n-1),\,\, n\,\geq\,2\)
Crank out the first few terms:
\(\displaystyle h(1)\;=\;x\)
\(\displaystyle h(2)\;=\;1\,-\,2x\)
\(\displaystyle h(3)\;=\;\text{-}1\,+\,4x\)
\(\displaystyle h(4)\;=\;3\,-\,8x\)
\(\displaystyle h(5)\;=\;\text{-}5\,+\,16x\)
\(\displaystyle h(6)\;=\;11\,-\,32x\)
\(\displaystyle h(7)\,=\,\text{-}21\,+\,64x\)
After the first term, the first constants are: \(\displaystyle 1,\;-1,\;3,\,-5,\;11,\;-21,\;43,\;...\)
These are the partial sums of the series: \(\displaystyle \,1\,-\,2\,+\,4\,-\,8\,+\,16\,-\,32\,+\,\cdots\)
\(\displaystyle \;\;\)In general: \(\displaystyle \,\frac{1\,-\,(-2)^{n-1}}{3}\)
After the first term, the coefficients are: \(\displaystyle \,-2,\;4,\;-8,\;16,\,-32,\;64,\;...\)
\(\displaystyle \;\;\)In general: \(\displaystyle \,(-2)^{n-1}\)
The general term of the recursion is: \(\displaystyle \,h(n)\;=\;\frac{1\,-\,(-2)^{n-1}}{3}\,+\,(-2)^{n-1}x\)