rectangular plate

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,530
A rectangular plate with a width of 16\displaystyle 16 m and a height of 12\displaystyle 12 m is located 4\displaystyle 4 m below a water surface. The plate is tilted and makes a 35°\displaystyle 35° angle with the horizontal. The resultant hydrostatic force acting on the top surface of this plate is

(a) 10800\displaystyle 10800 kN
(b) 9745\displaystyle 9745 kN
(c) 8470\displaystyle 8470 kN
(d) 6400\displaystyle 6400 kN
(e) 5190\displaystyle 5190 kN
 
A rectangular plate with a width of 16\displaystyle 16 m and a height of 12\displaystyle 12 m is located 4\displaystyle 4 m below a water surface. The plate is tilted and makes a 35°\displaystyle 35° angle with the horizontal. The resultant hydrostatic force acting on the top surface of this plate is

(a) 10800\displaystyle 10800 kN
(b) 9745\displaystyle 9745 kN
(c) 8470\displaystyle 8470 kN
(d) 6400\displaystyle 6400 kN
(e) 5190\displaystyle 5190 kN
show us your effort/s to solve this problem.
 
This problem can be solved by the Hydrostatic force formula.

FR=ρg(s+b2)sinθ ab\displaystyle F_R = \rho g\left(s + \frac{b}{2}\right)\sin\theta \ ab

=1000(9.81)(4+122)sin35 (16)(12)1.08×107 N=108000×103 N=108000 kN\displaystyle = 1000(9.81)\left(4 + \frac{12}{2}\right)\sin 35^{\circ} \ (16)(12) \approx 1.08 \times 10^7 \ \text{N} = 108000 \times 10^3 \ \text{N} = 108000 \ \text{kN}
 
Top