The second one. Sorry for the confusionIs it
(1):![]()
or
(2):![]()
??
The second one. Sorry for the confusion
To rationalize the denominator, you need to multiply (and divide) by the "conjugate" of the denominator. In this case, you would multiply the expression by
\(\displaystyle \displaystyle \frac{\sqrt{3} \ - \ \sqrt{2}}{\sqrt{3} \ - \ \sqrt{2}} \) - so we have
\(\displaystyle \displaystyle \frac{2}{\sqrt{3} \ + \ \sqrt{2}} \)
\(\displaystyle = \ \displaystyle \frac{2}{\sqrt{3} \ + \ \sqrt{2}} \ * \ \frac{\sqrt{3} \ - \ \sqrt{2}}{\sqrt{3} \ - \ \sqrt{2}} \)
\(\displaystyle = \ \displaystyle \frac{2 \ * \ (\sqrt{3} \ - \ \sqrt{2})}{(\sqrt{3} \ + \ \sqrt{2}) \ * \ (\sqrt{3} \ - \ \sqrt{2})} \)
and continue....
\(\displaystyle \displaystyle \frac{2}{\sqrt{3} \ + \ \sqrt{2}} \)
\(\displaystyle = \ \displaystyle \frac{2}{\sqrt{3} \ + \ \sqrt{2}} \ * \ \frac{\sqrt{3} \ - \ \sqrt{2}}{\sqrt{3} \ - \ \sqrt{2}} \)
\(\displaystyle = \ \displaystyle \frac{2 \ * \ (\sqrt{3} \ - \ \sqrt{2})}{(\sqrt{3} \ + \ \sqrt{2}) \ * \ (\sqrt{3} \ - \ \sqrt{2})} \)
\(\displaystyle \dfrac{2(\sqrt{3} - \sqrt{2}) }{3 - 2}\)
\(\displaystyle \dfrac{2(\sqrt{3}- \sqrt{2})}{1}\)
\(\displaystyle \dfrac{2(\sqrt{3}) - 2(\sqrt{2})}{1}\)
\(\displaystyle \dfrac{\sqrt{3} \sqrt{2}}{1}\) .......................... Incorrect - how did get here from above?
\(\displaystyle \sqrt{3} \sqrt{2}\).......................... Incorrect - because line above is incorrect
.\(\displaystyle \displaystyle \frac{2}{\sqrt{3} \ + \ \sqrt{2}} \)
\(\displaystyle = \ \displaystyle \frac{2}{\sqrt{3} \ + \ \sqrt{2}} \ * \ \frac{\sqrt{3} \ - \ \sqrt{2}}{\sqrt{3} \ - \ \sqrt{2}} \)
\(\displaystyle = \ \displaystyle \frac{2 \ * \ (\sqrt{3} \ - \ \sqrt{2})}{(\sqrt{3} \ + \ \sqrt{2}) \ * \ (\sqrt{3} \ - \ \sqrt{2})} \)
\(\displaystyle \dfrac{2(\sqrt{3} - \sqrt{2}) }{3 - 2}\)
\(\displaystyle \dfrac{2(\sqrt{3}- \sqrt{2})}{1}\)
\(\displaystyle \dfrac{2(\sqrt{3}) - 2(\sqrt{2})}{1}\)
\(\displaystyle \dfrac{\sqrt{3} \sqrt{2}}{1}\) WHAT ARE YOU DOING?
\(\displaystyle \sqrt{3} \sqrt{2}\)
.
\(\displaystyle \sqrt{2}\ and\ \sqrt{3}\) are numbers.
\(\displaystyle 2(12) - 2(7) = 24 - 14 = 10 \ne 84 = 12 * 7.\) Right?
Why in the world would you think that \(\displaystyle 2\sqrt{3} - 2\sqrt{2} = \sqrt{3} * \sqrt{2}\)?
So \(\displaystyle 2\sqrt{3}\) etc.. cannot be seperated?
\(\displaystyle 2\sqrt{3} - 2\sqrt{2} = 2(\sqrt{3} - \sqrt{2})\) if that is what you mean?So \(\displaystyle 2\sqrt{3}\) etc.. cannot be seperated?
Looks good to me!![]()