the rate of change in the number of bacteria present in a culture is proportional to twice the number of bacteria present. If y(0) = 6 and y(2) = 14, find y(5).
I'm not sure if I did this problem correctly:
dy/dt = 2ky
dy = k * 2y * dt
integral of dy/2y = integral of k dt
(1/2) ln abs(y) = kt + c
ln abs(y) = 2kt + 2c
y(t) = e ^ (2kt + 2c) = e^(2kt) * e^(2c)
y(t) = ce^(2kt)
y(0) = 6 = ce^0 c= 6
y(2) = 14 = 6e^(4k)
7/3 = e^(4k)
ln (7/3) = 4k
k = .2118
y(t) = 6e^.424t)
y(5) = 6e^(.424 * 5)
= 49.899
I'm not sure if I did this problem correctly:
dy/dt = 2ky
dy = k * 2y * dt
integral of dy/2y = integral of k dt
(1/2) ln abs(y) = kt + c
ln abs(y) = 2kt + 2c
y(t) = e ^ (2kt + 2c) = e^(2kt) * e^(2c)
y(t) = ce^(2kt)
y(0) = 6 = ce^0 c= 6
y(2) = 14 = 6e^(4k)
7/3 = e^(4k)
ln (7/3) = 4k
k = .2118
y(t) = 6e^.424t)
y(5) = 6e^(.424 * 5)
= 49.899