Radical equality

Hello, dmouthfan2028!

\(\displaystyle \text{Is }\sqrt{3-2\sqrt{2}}+1 \:=\: \sqrt{2}\text{ ?}\)

\(\displaystyle \text{If so, why? }\:\text{ How can it be proven?}\)

\(\displaystyle \text{We have: }\:x \;=\;\sqrt{3-2\sqrt{2}} + 1\)


\(\displaystyle \text{Note that: }3- 2\sqrt{2} \;=\;(\sqrt{2}-1)^2\)


\(\displaystyle \text{Hence: }\:\sqrt{3-2\sqrt{2}} + 1 \;=\;\sqrt{(\sqrt{2}-1)^2} + 1 \;=\;(\sqrt{2}-1) + 1 \;=\;\sqrt{2}\)

 
Top