When you have Trig function in Calculus you have to remember that the formulas for derivatives are derived by assuming that the angles are in radians.
So if [math]s(t) = 50 ~ cot( \theta )[/math], then [math]s'(t) = - 50 ~ csc^2 ( \theta )[/math], where [math]\theta[/math] is in radians.
If [math]\theta[/math] angle is in degrees we have to rewrite it in terms of radians. So [math]s(t) = 50 ~ cot( \theta ) = 50 ~ cot \left ( \dfrac{ \pi }{180} \theta (rad) \right )[/math], where [math]\dfrac{ \pi }{180} \theta [/math] is the angle measure in radians. Then [math]s'(t) = -50 \cdot \dfrac{ \pi }{180} csc^2 \left ( \dfrac{ \pi }{180} \theta (rad) \right )[/math], or putting the angle back into degrees: [math]s'(t) = -50 \cdot \dfrac{ \pi }{180} ~ csc^2( \theta )[/math].
I find it alot easier to just convert degrees right from the start.
-Dan