Question with triangles and squares in it

Love21

New member
Joined
Jan 18, 2008
Messages
31
Hello!

I'll first show you the question, then how far i've gotten....i'm not sure if i'm doing it right though : (
*********************************************************************
Let the operations (triangle) and (square) be defined for all real numbers a and b as follows.
a (triangle) b = a + 3b
a (square) b = a + 4b
If 4 (triangle) (5y) = (5y) (square) 4, what is the value of y?
*********************************************************************
So i substituted the two triangle equations together and the square...
4 (triangle) (5)(3)
4(triangle)15 = (5y)(square) 16....(i got 16 by multiplying the 2 fours)

4x15=60 60=(5y)(square)16

This is where I get stuck...I think i need to isolate the 5y...but i'm not sure, can someone tell me if i'm
doing this right, and how to proceed?
Thanks!
 
Hello, Love21!


\(\displaystyle \text{Let the operations }\Delta\text{ and }\square\text{ be defined for all real numbers }a\text{ and }b\text{ as follows.}\)

. . . \(\displaystyle a \Delta b \;= \;a + 3b\)

. . . \(\displaystyle a \square b \;= \;a + 4b\)

\(\displaystyle \text{If }4 \Delta (5y) \;= \;(5y) \square 4\text{, what is the value of }y?\)

\(\displaystyle \text{We have: }\;4 \Delta (5y) \;=\;4 + 3(5y) \;=\;4 + 15y\)

. . \(\displaystyle \text{and: }\;(5y) \square 4 \;=\;5y + 4(4) \;=\;5y + 16\)

\(\displaystyle \text{Since they are equal: }\;4 + 15y \:=\:5y + 16\quad\Rightarrow\quad10y \:=\:12\quad\Rightarrow\quad \boxed{y \:=\:\frac{6}{5}}\)

 
\(\displaystyle \begin{gathered} 4\Delta \left( {5y} \right) = \left( {5y} \right)\square 4 \hfill \\ 4 + 15y = 5y + 1 \hfill \\ \end{gathered}\)
Just solve for y.
 
Top