[attachment=0:3qm3i9fs]calc.jpg[/attachment:3qm3i9fs] How do I integrate this question?
S stickyhub91 New member Joined Sep 2, 2010 Messages 2 Sep 2, 2010 #1 [attachment=0:3qm3i9fs]calc.jpg[/attachment:3qm3i9fs] How do I integrate this question? Attachments calc.jpg 22.5 KB · Views: 41
R Ryan Rigdon Junior Member Joined Jun 10, 2010 Messages 246 Sep 2, 2010 #2 hope this helps. oops i saw a mistake be right back. made the corrections. Attachments 1.gif 15.5 KB · Views: 35
B BigGlenntheHeavy Senior Member Joined Mar 8, 2009 Messages 1,577 Sep 2, 2010 #5 ∫dx(x+1)2(x2+2x)1/2, Let u = x+1. du = dx, and x = u−1.\displaystyle \int\frac{dx}{(x+1)^2(x^2+2x)^{1/2}}, \ Let \ u \ = \ x+1. \ du \ = \ dx, \ and \ x \ = \ u-1.∫(x+1)2(x2+2x)1/2dx, Let u = x+1. du = dx, and x = u−1. So, ∫duu2[(u−1)2+2(u−1)]1/2 = ∫duu2(u2−1)1/2\displaystyle So, \ \int\frac{du}{u^2[(u-1)^2+2(u-1)]^{1/2}} \ = \ \int\frac{du}{u^2(u^2-1)^{1/2}}So, ∫u2[(u−1)2+2(u−1)]1/2du = ∫u2(u2−1)1/2du Now let u = sec(a), du = sec(a)tan(a)da.\displaystyle Now \ let \ u \ = \ sec(a), \ du \ = \ sec(a)tan(a)da.Now let u = sec(a), du = sec(a)tan(a)da. ∫sec(a)tan(a)dasec2(a)[sec2(a)−1]1/2 = ∫sec(a)tan(a)dasec2(a)tan(a)\displaystyle \int\frac{sec(a)tan(a)da}{sec^2(a)[sec^2(a)-1]^{1/2}} \ = \ \int\frac{sec(a)tan(a)da}{sec^2(a)tan(a)}∫sec2(a)[sec2(a)−1]1/2sec(a)tan(a)da = ∫sec2(a)tan(a)sec(a)tan(a)da = ∫dasec(a) = ∫cos(a)da = sin(a)+C\displaystyle = \ \int\frac{da}{sec(a)} \ = \ \int cos(a)da \ = \ sin(a)+C= ∫sec(a)da = ∫cos(a)da = sin(a)+C Now, sec(a) = u, hence sin(a) = u2−1u = (u = x+1) = (x+1)2−1x+1\displaystyle Now, \ sec(a) \ = \ u, \ hence \ sin(a) \ = \ \frac{\sqrt{u^2-1}}{u} \ = \ (u \ = \ x+1) \ = \ \frac{\sqrt{(x+1)^2-1}}{x+1}Now, sec(a) = u, hence sin(a) = uu2−1 = (u = x+1) = x+1(x+1)2−1 Therefore ∫dx(x+1)2(x2+2x)1/2 = x2+2xx+1+C\displaystyle Therefore \ \int\frac{dx}{(x+1)^2(x^2+2x)^{1/2}} \ = \ \frac{\sqrt{x^2+2x}}{x+1}+CTherefore ∫(x+1)2(x2+2x)1/2dx = x+1x2+2x+C
∫dx(x+1)2(x2+2x)1/2, Let u = x+1. du = dx, and x = u−1.\displaystyle \int\frac{dx}{(x+1)^2(x^2+2x)^{1/2}}, \ Let \ u \ = \ x+1. \ du \ = \ dx, \ and \ x \ = \ u-1.∫(x+1)2(x2+2x)1/2dx, Let u = x+1. du = dx, and x = u−1. So, ∫duu2[(u−1)2+2(u−1)]1/2 = ∫duu2(u2−1)1/2\displaystyle So, \ \int\frac{du}{u^2[(u-1)^2+2(u-1)]^{1/2}} \ = \ \int\frac{du}{u^2(u^2-1)^{1/2}}So, ∫u2[(u−1)2+2(u−1)]1/2du = ∫u2(u2−1)1/2du Now let u = sec(a), du = sec(a)tan(a)da.\displaystyle Now \ let \ u \ = \ sec(a), \ du \ = \ sec(a)tan(a)da.Now let u = sec(a), du = sec(a)tan(a)da. ∫sec(a)tan(a)dasec2(a)[sec2(a)−1]1/2 = ∫sec(a)tan(a)dasec2(a)tan(a)\displaystyle \int\frac{sec(a)tan(a)da}{sec^2(a)[sec^2(a)-1]^{1/2}} \ = \ \int\frac{sec(a)tan(a)da}{sec^2(a)tan(a)}∫sec2(a)[sec2(a)−1]1/2sec(a)tan(a)da = ∫sec2(a)tan(a)sec(a)tan(a)da = ∫dasec(a) = ∫cos(a)da = sin(a)+C\displaystyle = \ \int\frac{da}{sec(a)} \ = \ \int cos(a)da \ = \ sin(a)+C= ∫sec(a)da = ∫cos(a)da = sin(a)+C Now, sec(a) = u, hence sin(a) = u2−1u = (u = x+1) = (x+1)2−1x+1\displaystyle Now, \ sec(a) \ = \ u, \ hence \ sin(a) \ = \ \frac{\sqrt{u^2-1}}{u} \ = \ (u \ = \ x+1) \ = \ \frac{\sqrt{(x+1)^2-1}}{x+1}Now, sec(a) = u, hence sin(a) = uu2−1 = (u = x+1) = x+1(x+1)2−1 Therefore ∫dx(x+1)2(x2+2x)1/2 = x2+2xx+1+C\displaystyle Therefore \ \int\frac{dx}{(x+1)^2(x^2+2x)^{1/2}} \ = \ \frac{\sqrt{x^2+2x}}{x+1}+CTherefore ∫(x+1)2(x2+2x)1/2dx = x+1x2+2x+C