Question on integration technique

stickyhub91

New member
Joined
Sep 2, 2010
Messages
2
[attachment=0:3qm3i9fs]calc.jpg[/attachment:3qm3i9fs]

How do I integrate this question?
 

Attachments

  • calc.jpg
    calc.jpg
    22.5 KB · Views: 41
hope this helps. oops i saw a mistake be right back. made the corrections.
 

Attachments

  • 1.gif
    1.gif
    15.5 KB · Views: 35
dx(x+1)2(x2+2x)1/2, Let u = x+1. du = dx, and x = u1.\displaystyle \int\frac{dx}{(x+1)^2(x^2+2x)^{1/2}}, \ Let \ u \ = \ x+1. \ du \ = \ dx, \ and \ x \ = \ u-1.

So, duu2[(u1)2+2(u1)]1/2 = duu2(u21)1/2\displaystyle So, \ \int\frac{du}{u^2[(u-1)^2+2(u-1)]^{1/2}} \ = \ \int\frac{du}{u^2(u^2-1)^{1/2}}

Now let u = sec(a), du = sec(a)tan(a)da.\displaystyle Now \ let \ u \ = \ sec(a), \ du \ = \ sec(a)tan(a)da.

sec(a)tan(a)dasec2(a)[sec2(a)1]1/2 = sec(a)tan(a)dasec2(a)tan(a)\displaystyle \int\frac{sec(a)tan(a)da}{sec^2(a)[sec^2(a)-1]^{1/2}} \ = \ \int\frac{sec(a)tan(a)da}{sec^2(a)tan(a)}

= dasec(a) = cos(a)da = sin(a)+C\displaystyle = \ \int\frac{da}{sec(a)} \ = \ \int cos(a)da \ = \ sin(a)+C

Now, sec(a) = u, hence sin(a) = u21u = (u = x+1) = (x+1)21x+1\displaystyle Now, \ sec(a) \ = \ u, \ hence \ sin(a) \ = \ \frac{\sqrt{u^2-1}}{u} \ = \ (u \ = \ x+1) \ = \ \frac{\sqrt{(x+1)^2-1}}{x+1}

Therefore dx(x+1)2(x2+2x)1/2 = x2+2xx+1+C\displaystyle Therefore \ \int\frac{dx}{(x+1)^2(x^2+2x)^{1/2}} \ = \ \frac{\sqrt{x^2+2x}}{x+1}+C
 
Top