G
Guest
Guest
I am trying to evaluate [9^(1/3)*27^(-1/2)] ÷ [3^(-1/6)*3^(-2/3)] and have got stuck. Can anyone help? My working is below:
Multiply by 3^(1/6)*3^(2/3) to remove negative indices from denominator...
9^(1/3)*3^(1/6)*3^(2/3)*27^(-1/2)
Simplify expression by adding together the 3's...
3^(1/6)*3^(4/6) = 3^(5/6)
This leaves me with:
9^(1/3)*3^(2/3)*27^(-1/2)
From here I can't multiply the bases because they all have different indices, nor can I add the indices because they all have different bases. How do I get from here to the final answer of 1?
:?
Multiply by 3^(1/6)*3^(2/3) to remove negative indices from denominator...
9^(1/3)*3^(1/6)*3^(2/3)*27^(-1/2)
Simplify expression by adding together the 3's...
3^(1/6)*3^(4/6) = 3^(5/6)
This leaves me with:
9^(1/3)*3^(2/3)*27^(-1/2)
From here I can't multiply the bases because they all have different indices, nor can I add the indices because they all have different bases. How do I get from here to the final answer of 1?
:?