Hello everyone, Need help with the following question please :
There shall be a non-\(\displaystyle T:R^3\rightarrow R^3\) linear copy defined by:
. . . . .\(\displaystyle T(x,\, y,\, z)\, =\, (x\, -\, 2z,\, 2x\, -\, y\, +\, 3z,\, 4x\, +\, y\, +\, 8z)\)
to all \(\displaystyle (x,\, y,\, z)\, \in\, R^3\)
Prove that T - isomorphism and thought - \(\displaystyle .T^{-1}(x,\, y,\, z)\)
There shall be a non-\(\displaystyle T:R^3\rightarrow R^3\) linear copy defined by:
. . . . .\(\displaystyle T(x,\, y,\, z)\, =\, (x\, -\, 2z,\, 2x\, -\, y\, +\, 3z,\, 4x\, +\, y\, +\, 8z)\)
to all \(\displaystyle (x,\, y,\, z)\, \in\, R^3\)
Prove that T - isomorphism and thought - \(\displaystyle .T^{-1}(x,\, y,\, z)\)
Attachments
Last edited by a moderator: