varun_kanpur
New member
- Joined
- May 21, 2013
- Messages
- 13
I am not able to solve this problem
if \(\displaystyle a^2+b^2=1\) then find the range of \(\displaystyle a+b\)
what I am doing is
\(\displaystyle (a+b)^2>0\)
\(\displaystyle a^2+b^2+2ab>0\) where \(\displaystyle a^2+b^2=1\)
\(\displaystyle 1+2ab>0\)
\(\displaystyle 2ab>-1\)
Case 2
\(\displaystyle (a-b)^2>0\)
\(\displaystyle a^2+b^2-2ab>0\) where \(\displaystyle a^2+b^2=1\)
\(\displaystyle 1-2ab>0\)
\(\displaystyle 2ab<1\)
\(\displaystyle -1<2ab<1\)
\(\displaystyle a+b=\sqrt{a^2+b^2+2ab}\)
\(\displaystyle a+b=\sqrt{1+2ab}\)
\(\displaystyle a+b=\sqrt{1-1}\) \(\displaystyle -1<2ab<1\) to find minimum
\(\displaystyle a+b=0\)
\(\displaystyle a+b=\sqrt{1+1}\) \(\displaystyle -1<2ab<1\) to find maximum
\(\displaystyle a+b=\sqrt{2}\)
The range I am getting is \(\displaystyle (0,\sqrt{2})\) but the answer is (\(\displaystyle (-\sqrt{2},\sqrt{2})\)
if \(\displaystyle a^2+b^2=1\) then find the range of \(\displaystyle a+b\)
what I am doing is
\(\displaystyle (a+b)^2>0\)
\(\displaystyle a^2+b^2+2ab>0\) where \(\displaystyle a^2+b^2=1\)
\(\displaystyle 1+2ab>0\)
\(\displaystyle 2ab>-1\)
Case 2
\(\displaystyle (a-b)^2>0\)
\(\displaystyle a^2+b^2-2ab>0\) where \(\displaystyle a^2+b^2=1\)
\(\displaystyle 1-2ab>0\)
\(\displaystyle 2ab<1\)
\(\displaystyle -1<2ab<1\)
\(\displaystyle a+b=\sqrt{a^2+b^2+2ab}\)
\(\displaystyle a+b=\sqrt{1+2ab}\)
\(\displaystyle a+b=\sqrt{1-1}\) \(\displaystyle -1<2ab<1\) to find minimum
\(\displaystyle a+b=0\)
\(\displaystyle a+b=\sqrt{1+1}\) \(\displaystyle -1<2ab<1\) to find maximum
\(\displaystyle a+b=\sqrt{2}\)
The range I am getting is \(\displaystyle (0,\sqrt{2})\) but the answer is (\(\displaystyle (-\sqrt{2},\sqrt{2})\)