\(\displaystyle Given: \ px-20p-6x-40 \ = \ 0 \ and \ \frac{dx}{dt} \ = \ -8: \ find \ \frac{dp}{dt} \ when \ x \ = \ 100.\)
\(\displaystyle p(x-20) \ = \ 6x+40, \ p \ = \ \frac{6x+40}{x-20}\)
\(\displaystyle \frac{dp}{dt} \ = \ \frac{(x-20)(6(dx/dt))-(6x+40)(dx/dt)}{(x-20)^{2}} \ = \ \frac{1280}{(x-20)^{2}}\)
\(\displaystyle Now, \ when \ x \ = \ 100, \ \frac{dp}{dt} \ \ = \ \frac{1280}{80^{2}} \ = \ \frac{1}{5}.\)