2/ log(base 9) a - 1/log (base 3) a = 3/log(base 3) a
K kimmy_koo51 Junior Member Joined Sep 19, 2006 Messages 73 Dec 4, 2006 #1 2/ log(base 9) a - 1/log (base 3) a = 3/log(base 3) a
skeeter Elite Member Joined Dec 15, 2005 Messages 3,216 Dec 4, 2006 #2 hint ... use the change of base formula \(\displaystyle \L \log_9{a} = \frac{\log_3{a}}{\log_3{9}} = \frac{\log_3{a}}{2}\)
hint ... use the change of base formula \(\displaystyle \L \log_9{a} = \frac{\log_3{a}}{\log_3{9}} = \frac{\log_3{a}}{2}\)
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Dec 5, 2006 #3 Re: Proving Log relation: 2/log(base 9) a - 1/log (base 3) a Hello, kimmy_koo51! Are you familiar with this identity? \(\displaystyle \L\:\log_b(a) \:=\:\frac{1}{\log_a(b)}\) Prove: \(\displaystyle \L\:\frac{2}{\log_9(a)}\,-\,\frac{1}{\log_3(a)} \:= \:\frac{3}{\log_3(a)}\) Click to expand... The left side is: . . . . . . \(\displaystyle \L2\cdot\frac{1}{\log_9(a)} \,- \,\frac{1}{\log_3(a)}\) . . \(\displaystyle \L=\;2\cdot\log_a(9)\,-\,\log_a(3)\) . . \(\displaystyle \L=\;\log_a(9^2)\,-\,\log_a(3)\) . . \(\displaystyle \L=\;\log_a(81)\,-\,\log_a(3)\) . . \(\displaystyle \L= \;\log_a\left(\frac{81}{3}\right)\) . . \(\displaystyle \L=\;\log_a(27)\) . . \(\displaystyle \L=\;\log_a(3^3)\) . . \(\displaystyle \L=\;3\cdot\log_a(3)\) . . \(\displaystyle \L=\;\frac{3}{\log_3(a)}\)
Re: Proving Log relation: 2/log(base 9) a - 1/log (base 3) a Hello, kimmy_koo51! Are you familiar with this identity? \(\displaystyle \L\:\log_b(a) \:=\:\frac{1}{\log_a(b)}\) Prove: \(\displaystyle \L\:\frac{2}{\log_9(a)}\,-\,\frac{1}{\log_3(a)} \:= \:\frac{3}{\log_3(a)}\) Click to expand... The left side is: . . . . . . \(\displaystyle \L2\cdot\frac{1}{\log_9(a)} \,- \,\frac{1}{\log_3(a)}\) . . \(\displaystyle \L=\;2\cdot\log_a(9)\,-\,\log_a(3)\) . . \(\displaystyle \L=\;\log_a(9^2)\,-\,\log_a(3)\) . . \(\displaystyle \L=\;\log_a(81)\,-\,\log_a(3)\) . . \(\displaystyle \L= \;\log_a\left(\frac{81}{3}\right)\) . . \(\displaystyle \L=\;\log_a(27)\) . . \(\displaystyle \L=\;\log_a(3^3)\) . . \(\displaystyle \L=\;3\cdot\log_a(3)\) . . \(\displaystyle \L=\;\frac{3}{\log_3(a)}\)