Hello, synx!
Proving limit using squeeze/sandwich theorem
\(\displaystyle \;\;\lim_{x\to0}\frac{1\,-\,\cos x}{x^2}\;=\;\frac{1}{2}\)
I too am having trouble finding the sandwiching functions.
I found two ways to prove it using the theorem: \(\displaystyle \;\lim_{x\to0}\frac{\sin x}{x}\;=\;1\)
[1] Multiply top and bottom by \(\displaystyle (1\,+\,\cos x):\)
\(\displaystyle \;\;\frac{\1\,-\,\cos x}{x^2}\,\cdot\,\frac{1\,+\,\cos x}{1\,+\,\cos x}\;=\;\frac{1\,-\,\cos^2x}{x^2(1\,+\,\cos x)} \:=\:\frac{\sin^2x}{x^2(1\,+\,\cos x)} \;= \;\left(\frac{\sin x}{x}\right)^2\cdot\left(\frac{1}{1\,+\,\cos x}\right)\)
\(\displaystyle \;\;\)Then: \(\displaystyle \;\lim_{x\to0}\left(\frac{\sin x}{x}\right)^2\left(\frac{1}{1\,+\,\cos x}\right) \;= \;(1^2)\left(\frac{1}{2}\right) \;=\;\frac{1}{2}\)
[2] Using that identify we have: \(\displaystyle \:\frac{2\sin^2\left(\frac{x}{2}\right)}{x^2} \;=\;\frac{1}{2}\,\cdot\,\frac{\sin^2\left(\frac{x}{2}\right)}{\frac{x^2}{4}} \;= \;\frac{1}{2}\,\cdot\,\frac{\sin^2\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^2}\)
\(\displaystyle \;\;\)Then: \(\displaystyle \:\lim_{\frac{x}{2}\to0}\,\frac{1}{2}\,\left[\frac{sin(\frac{x}{2})}{\frac{x}{2}}\right]^2\;= \;\frac{1}{2}\cdot1^2\;=\;\frac{1}{2}\)
Edit: Daon was too fast for me!