This is a proof that does not require a calculator.
The proposition to be proved is:
[MATH](m, \ n, \ p, \ q\text { are positive integers}) \land (m > 1) \land (m \ | \ p^q - 1) \implies[/MATH]
[MATH]m \ | \ p^{nq} - 1.[/MATH]
Proof
[MATH]\text {By hypothesis, } m \ | \ p^q - 1 = p^{1 * q} - 1.[/MATH]
[MATH]\therefore \text {Proposition is true if } n = 1.[/MATH]
[MATH]\text {Furthermore, } \exists \text { integer } j_1 \text { such that } j_1 * m = p^q - 1.[/MATH]
[MATH]\therefore \text {There are one or more positive integers for which proposition is true,}[/MATH]
[MATH]\text {Let } k \text { be an arbitrary one of those positive integers.}[/MATH]
[MATH]\therefore k \text { is an integer} \ge 1 \land m \ | p^{kq} - 1.[/MATH]
[MATH]\therefore \text {By the definition of divisibility, }\\
\exists \ \text { an integer } j_k \text { such that } j_k * m = p^{kq} - 1.[/MATH][MATH]p^{(k+1)*q} - 1 = p^{(k+1)*q} - (p^{kq} - p^{kq}) - 1 \implies[/MATH]
[MATH]p^{(k+1)*q} - 1 = p^{kq}(p^q - 1) + (p^{kq} - 1) \implies[/MATH]
[MATH]p^{(k+1)*q} - 1 = p^{kq}(j_1 * m) + (j_k * m) = m * ( p^{kj} * j_1 + j_k).[/MATH]
[MATH]\text {But } p^{kj} * j_1 + j_k \text { is an integer.}[/MATH]
[MATH]\therefore \text {By the definition of divisibility, } m \ | \ p^{(k+1)q} - 1.[/MATH]
Once we have this general theorem, we can move along as follows.
[MATH]3^5 - 1 = 243 - 1 = 242 = 2 * 11^2 \implies 11 \ | \ 3^5 - 1.[/MATH]
[MATH]3^6 - 1 = 729 - 1 = 728 = 2^3 * 7 * 13 \implies (7 \ | \ 3^6 - 1) \land (13 \ | \ 3^6 - 1).[/MATH]
Then our theorem says that 7, 11, and 13 are all divisors of both 3^(30) - 1 and 3^{60} - 1, blah blah blah
If I knew more math I could probably give a more elegant proof, but I think this one is pretty solid.