"Prove that for all x > 0, x > tan<sup>-1</sup> x. Explain you arguments and any theorems used clearly."
I have tried looking at the power series for tan<sup>-1</sup> x:
\(\displaystyle \tan ^{ - 1} x = \sum\limits_{n = 0}^\infty {( - 1)^n {{x^{2n + 1} } \over {2n + 1}}} = x - {{x^3 } \over 3} + {{x^5 } \over 5} - {{x^7 } \over 7} + ...\)
That doesn't seem to help me because I don't know how to prove \(\displaystyle - {{x^3 } \over 3} + {{x^5 } \over 5} - {{x^7 } \over 7} + ... < 0\)
Any ideas?
Thanks,
crestu
I have tried looking at the power series for tan<sup>-1</sup> x:
\(\displaystyle \tan ^{ - 1} x = \sum\limits_{n = 0}^\infty {( - 1)^n {{x^{2n + 1} } \over {2n + 1}}} = x - {{x^3 } \over 3} + {{x^5 } \over 5} - {{x^7 } \over 7} + ...\)
That doesn't seem to help me because I don't know how to prove \(\displaystyle - {{x^3 } \over 3} + {{x^5 } \over 5} - {{x^7 } \over 7} + ... < 0\)
Any ideas?
Thanks,
crestu