You have the first part OK.
\(\displaystyle \L\\\frac{d}{dx}[tan^{-1}(x)]=\frac{1}{1+x^{2}}\)
Now, the second part, notice the chain in the expression.
\(\displaystyle \L\\\frac{d}{dx}[\frac{1}{x}]=\frac{-1}{x^{2}}\)
Sub 1/x in for x in the arctan differential, getting:
\(\displaystyle \L\\\frac{1}{1+\frac{1}{x^{2}}}\)
Chain rule:
\(\displaystyle \L\\\frac{-1}{x^{2}}\cdot\frac{1}{1+\frac{1}{x^{2}}}\)
Do the algebra, this reduces to:
\(\displaystyle \L\\\frac{-1}{1+x^{2}}\)
So, you have:
\(\displaystyle \L\\\frac{1}{1+x^{2}}-\frac{1}{1+x^{2}}=0\)