prove with rules of differntiation

dbob85

New member
Joined
Oct 23, 2006
Messages
11
I am hung up on how to work this the question says to prove using rules of differentaition (d/dx) {tan^-1(x)+tan^-1(1/x)}=0
I've got this far (1/(1+x^2)+1/(1+(1/x)^2=0
 
You have the first part OK.

\(\displaystyle \L\\\frac{d}{dx}[tan^{-1}(x)]=\frac{1}{1+x^{2}}\)

Now, the second part, notice the chain in the expression.

\(\displaystyle \L\\\frac{d}{dx}[\frac{1}{x}]=\frac{-1}{x^{2}}\)

Sub 1/x in for x in the arctan differential, getting:

\(\displaystyle \L\\\frac{1}{1+\frac{1}{x^{2}}}\)

Chain rule:

\(\displaystyle \L\\\frac{-1}{x^{2}}\cdot\frac{1}{1+\frac{1}{x^{2}}}\)

Do the algebra, this reduces to:

\(\displaystyle \L\\\frac{-1}{1+x^{2}}\)

So, you have:

\(\displaystyle \L\\\frac{1}{1+x^{2}}-\frac{1}{1+x^{2}}=0\)
 
Hello, dbob85!

Galactus is correct . . . Let me use a slightly different approach.


Prove that: \(\displaystyle \L\,\frac{d}{dx}\left[\tan^{-1}(x)\,+\,\tan^{-1}\left(\frac{1}{x}\right)\right] \:= \:0\)

We have: \(\displaystyle \L\,f(x) \:=\:\arctan(x) \,+ \,\arctan\left(x^{-1}\right)\)

Then: \(\displaystyle \L\:\frac{dy}{dx} \;= \;\frac{1}{1\,+\,x^2} \,+\,\frac{1}{1\,+\,(x^{-1})^2}\,\cdot\left(-x^{-2}\right)\)

. . . . \(\displaystyle \L\:\frac{dy}{dx}\;= \;\frac{1}{1\,+\,x^2}\,-\,\frac{x^{-2}}{1\,+\,x^{-2}}\)


Multiply the second fracton by \(\displaystyle \L\frac{x^{^2}}{x^{^2}}:\)

. . \(\displaystyle \L\:\frac{dy}{dx}\;=\;\frac{1}{1\,+\,x^2} \,-\,\frac{x^{-2}}{1\,+\,x^{-2}}\cdot\frac{x^2}{x^2} \;=\;\frac{1}{1\,+\,x^2} \,-\,\frac{1}{x^2\,+\,1}\;=\;0\)

 
Top