Prove trig equation

courteous

New member
Joined
Sep 21, 2008
Messages
41
Prove using addition theorem: \(\displaystyle \arctan({5})+\arctan({-\frac{2}{3})=\frac{\pi}{4}\)

My misthought :) \displaystyle \rightarrow If you tan\displaystyle \tan the whole equation, don't you get 523=tanπ4\displaystyle 5-\frac{2}{3}=\tan{\frac{\pi}{4}} ? Guess not, as it disqualifies the equality, but what do you get :?:
 
courteous said:
Prove using addition theorem: \(\displaystyle \arctan({5})+\arctan({-\frac{2}{3})=\frac{\pi}{4}\)

My misthought :) \displaystyle \rightarrow If you tan\displaystyle \tan the whole equation, don't you get 523=tanπ4\displaystyle 5-\frac{2}{3}=\tan{\frac{\pi}{4}} ? Guess not, as it disqualifies the equality, but what do you get :?:

I t was not a misthought - almost good-thought (but almost)...

assume

arctan(5)=θ\displaystyle \arctan({5}) \, = \, \theta

then

tan(θ)=5..........................................................(1)\displaystyle \tan(\theta) \, = \, 5..........................................................(1)

and

arctan(23)=ϕ\displaystyle \arctan({-\frac{2}{3}}) \, = \, \phi

then

tan(ϕ)=23..................................................(2)\displaystyle \tan(\phi) \, = \, -\frac{2}{3}..................................................(2)

then

You need to prove:

\(\displaystyle tan[(\arctan({5})+\arctan({-\frac{2}{3})] \, = \, tan[\frac{\pi}{4}]\)

or

tan(θ+ϕ)=1.................................................(3)\displaystyle tan(\theta \, + \, \phi) \, = \, 1.................................................(3)

Now continue....
 
... 5231+523\displaystyle \frac{5-\frac{2}{3}}{1+5*\frac{2}{3}} :)
 
Top