Prove the following formula

mathprob

New member
Joined
Dec 3, 2006
Messages
2
Given that A + B + C = 180 degrees

prove that

TanA + TanB + TanC = TanATanBTanC
 
Hello, mathprob!

This is a classic (old) problem . . .
I too struggled with it and was surprised by the simple procedure
. . IF we approach it correctly.


Given that \(\displaystyle A\,+\,B\,+\,C\:=\:180^o\)
prove that: \(\displaystyle \,\tan A\,+\,\tan B\,+\,\tan C \:= \:\tan A\cdot\tan B\cdot\tan C\)

We have: \(\displaystyle \L\:A\,+\,B\:=\:180^o\,-\,C\)


Take the tangent of both sides: \(\displaystyle \L\:\tan(A\,+\,B)\:=\:\tan(180^o\,-\,C)\)


Then we have: \(\displaystyle \L\:\frac{\tan A \,+\,\tan B}{1\,-\,\tan A\cdot\tan B} \:=\:-\tan C\;\) **


Hence: \(\displaystyle \L\:\tan A\,+\,\tan B \:=\:-\tan C\,+\,\tan A\cdot\tan B\cdot\tan C\)


Therefore: \(\displaystyle \L\:\tan A\,+\,\tan B\,+\,\tan C\;=\;\tan A\cdot\tan B\cdot\tan C\)


~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

**

Two identities were used:

. . \(\displaystyle \L\tan(x\,+\,y)\;=\;\frac{\tan x\,+\,\tan y}{1\,-\,\tan x\cdot\tan y}\)

. . \(\displaystyle \L\tan(180^o\,-\,\theta)\;=\;-\tan\theta\)

 
Top