Prove that if [imath]A \subseteq B \subseteq \mathbb{R}[/imath] with [imath]A \ne \emptyset[/imath] and [imath]B \ne \emptyset[/imath], then [imath]\sup A \le \sup B[/imath].
I tried this: by definition of supremum, for each [imath]\epsilon>0[/imath] there exists [imath]a_\epsilon \in A[/imath] such that [imath]\sup A-\epsilon<a_\epsilon[/imath]. But [imath]A \subseteq B[/imath], so since [imath]a_\epsilon \in A[/imath] it is [imath]a_\epsilon \in B[/imath]. But, by definition of supremum, from [imath]a_\epsilon \in B[/imath] it follows that [imath]a_\epsilon \le \sup B[/imath]. So, for each [imath]\epsilon>0[/imath] it is [imath]\sup A-\epsilon<\sup B[/imath]. This implies [imath]\sup A \le \sup B[/imath]. Is this correct?
I tried this: by definition of supremum, for each [imath]\epsilon>0[/imath] there exists [imath]a_\epsilon \in A[/imath] such that [imath]\sup A-\epsilon<a_\epsilon[/imath]. But [imath]A \subseteq B[/imath], so since [imath]a_\epsilon \in A[/imath] it is [imath]a_\epsilon \in B[/imath]. But, by definition of supremum, from [imath]a_\epsilon \in B[/imath] it follows that [imath]a_\epsilon \le \sup B[/imath]. So, for each [imath]\epsilon>0[/imath] it is [imath]\sup A-\epsilon<\sup B[/imath]. This implies [imath]\sup A \le \sup B[/imath]. Is this correct?