If [imath]f(x)\ge 0[/imath] on [imath][a,\ b][/imath], then prove that [imath]\int_a^b f(x)dx\ge 0[/imath].
My attempt:
Case 1: [imath]f(x)=0[/imath] on [imath][a,\ b][/imath].
[imath]G(x)=0\forall x\in [a,\ b][/imath] is an antiderivative of [imath]f(x)[/imath] on [imath][a,\ b][/imath].
[imath]\int_a^b f(x)dx=G(a)-G(b)=0-0=0[/imath]
Case 2: [imath]f'(x)>0[/imath] on [imath][a,\ b][/imath].
Let [imath]G(x)[/imath] be an antiderivative of [imath]f(x)[/imath] on [imath][a,\ b][/imath].
[imath]G'(x)=f(x)>0[/imath] on [imath][a,\ b][/imath].
So, [imath]G[/imath] is increasing on [imath][a,\ b][/imath].
Since [imath]a<b[/imath], [imath]G(a)<G(b)[/imath].
[imath]\implies\int_a^b f(x)dx=G(b)-G(a)>0[/imath]
-------------------------------------------------------
Thus, in both cases, [imath]\int_a^b f(x)dx\ge 0[/imath].
Does this look right?
My attempt:
Case 1: [imath]f(x)=0[/imath] on [imath][a,\ b][/imath].
[imath]G(x)=0\forall x\in [a,\ b][/imath] is an antiderivative of [imath]f(x)[/imath] on [imath][a,\ b][/imath].
[imath]\int_a^b f(x)dx=G(a)-G(b)=0-0=0[/imath]
Case 2: [imath]f'(x)>0[/imath] on [imath][a,\ b][/imath].
Let [imath]G(x)[/imath] be an antiderivative of [imath]f(x)[/imath] on [imath][a,\ b][/imath].
[imath]G'(x)=f(x)>0[/imath] on [imath][a,\ b][/imath].
So, [imath]G[/imath] is increasing on [imath][a,\ b][/imath].
Since [imath]a<b[/imath], [imath]G(a)<G(b)[/imath].
[imath]\implies\int_a^b f(x)dx=G(b)-G(a)>0[/imath]
-------------------------------------------------------
Thus, in both cases, [imath]\int_a^b f(x)dx\ge 0[/imath].
Does this look right?
Last edited: