Let [imath]A,B[/imath] be subsets of a set [imath]X[/imath]. I wanted to know if the following proof of [imath](A\setminus B) \cap (B\setminus A) = \varnothing[/imath] is correct from a logical point of view: I know there are simpler proofs, but I wanted to improve my skill with formal logic.
Proof: [imath]\exists x, (x \in A \wedge x \notin A \wedge x \in B \wedge x \notin B)[/imath] is false for each [imath]x \in X[/imath], so [imath]\nexists x, (x \in A \wedge x \notin A \wedge x \in B \wedge x \notin B)[/imath] is true for each [imath]x \in X[/imath]. Hence, by associativity and commutativity of logical disjunction, we deduce that [imath]\nexists x, ((x \in A \wedge x \notin B) \wedge (x \in B \wedge x \notin A))[/imath] is true for each [imath]x \in X[/imath]. So, [imath]\nexists x, ((x \in A \setminus B) \wedge (x \in B \setminus A))[/imath] is true for each [imath]x \in X[/imath]; finally, [imath]\nexists x, (x\in (A \setminus B) \cap (B \setminus A))[/imath] is true for each [imath]x \in X[/imath] and so [imath](A \setminus B) \cap (B \setminus A) = \varnothing[/imath] is true.
Is this formally correct?
Proof: [imath]\exists x, (x \in A \wedge x \notin A \wedge x \in B \wedge x \notin B)[/imath] is false for each [imath]x \in X[/imath], so [imath]\nexists x, (x \in A \wedge x \notin A \wedge x \in B \wedge x \notin B)[/imath] is true for each [imath]x \in X[/imath]. Hence, by associativity and commutativity of logical disjunction, we deduce that [imath]\nexists x, ((x \in A \wedge x \notin B) \wedge (x \in B \wedge x \notin A))[/imath] is true for each [imath]x \in X[/imath]. So, [imath]\nexists x, ((x \in A \setminus B) \wedge (x \in B \setminus A))[/imath] is true for each [imath]x \in X[/imath]; finally, [imath]\nexists x, (x\in (A \setminus B) \cap (B \setminus A))[/imath] is true for each [imath]x \in X[/imath] and so [imath](A \setminus B) \cap (B \setminus A) = \varnothing[/imath] is true.
Is this formally correct?