2/7 * ( 3( a/b )+5 )-9
2/7 * ( 3a/b +5 )-9
2/7 * ( 3a +5b/b ) -9
(6a + 10b /7b) - 9
6a + 10b -63b / 7b
6a - 53b / 7b
is this correct so far?
Good. Just a final line of justification needed.
(Also, I suspect proper layout is easier for you when the answer is written out on paper, in normal mathematical format).
For a direct proof at this level, you're probably just looking to show that:
[MATH]\frac{2}{7}\left(3r+5\right)-9[/MATH] can be written as [MATH]\frac{c}{d}[/MATH] with [MATH]c[/MATH] and [MATH]d[/MATH] integers [MATH](d\neq0)[/MATH]
[MATH]r\ [/MATH] is rational so [MATH]r=\frac{a}{b}[/MATH] for some integers [MATH]a, b[/MATH] with [MATH]b\neq0[/MATH]
Then [MATH]\frac{2}{7}\left(3r+5\right)-9[/MATH]
[MATH]=\frac{2}{7}\left(\frac{3a}{b}+5\right)-9[/MATH]
[MATH]=\frac{6a}{7b}+\frac{10}{7}-9[/MATH]
[MATH]=\frac{6a}{7b}-\frac{53}{7}[/MATH]
[MATH]=\frac{6a}{7b}-\frac{53b}{7b}[/MATH]
[MATH]=\frac{6a-53b}{7b}[/MATH]
Since [MATH]a[/MATH] is an integer, then [MATH]6a-53b[/MATH] is also an integer.
Since [MATH]b[/MATH] is an integer and not 0, [MATH]7b[/MATH] is an integer and not 0.
Therefore [MATH]\frac{6a-53b}{7b}[/MATH] is a rational.
(i.e. [MATH]\frac{2}{7}\left(3r+5\right)-9[/MATH] is a rational. Q.E.D.)